Skip to main content

Advertisement

Log in

Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI

  • Functional Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness.

Methods

Ten right-handed and ten left-handed healthy subjects were included. White matter fiber bundles were extracted using a streamline tractography approach, with two seed regions of interest (ROI) taken from a parcellation of the pre- and postcentral gyri. This parcellation was achieved using T1 magnetic resonance images (MRI) and semi-automatically generated three ROIs within each gyrus. MRI tracks were reconstructed between all pairs of ROIs connecting the adjacent pre- and postcentral gyri. A quantitative analysis was performed on the number of tracks connecting each ROI pair. A statistical analysis studied the repartition of these MRI tracks in the right and left hemispheres and as a function of the subjects' handedness.

Results

The quantitative analysis showed an increased density of MRI tracks in the middle part of the central area in each hemisphere of the 20 subjects. The statistical analysis showed significantly more MRI tracks for the left hemisphere, when we consider the whole population, and this difference was presumably driven by the left-handers.

Conclusion

These results raise questions about the functional role of these MRI tracks and their relation with laterality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zilles K, Amunts K (2010) Centenary of Brodmann's map—conception and fate. Nat Rev Neurosci 11:139–145

    Article  PubMed  CAS  Google Scholar 

  2. Geyer S, Schleicher A, Zilles K (1997) The somatosensory cortex of human: cytoarchitecture and regional distributions of receptor-binding sites. NeuroImage 6:27–45

    Article  PubMed  CAS  Google Scholar 

  3. Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qu M, Dabringhaus A, Seitz R, Roland PE (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat 187(Pt 3):515–537

    PubMed  CAS  Google Scholar 

  4. White LE, Andrews TJ, Hulette C, Richards A, Groelle M, Paydarfar J, Purves D (1997) Structure of the human sensorimotor system. I: morphology and cytoarchitecture of the central sulcus. Cereb Cortex 7:18–30

    Article  PubMed  CAS  Google Scholar 

  5. Boling W, Olivier A, Fabinyi G (2002) Historical contributions to the modern understanding of function in the central area. Neurosurgery 50:1296–309, discussion

    PubMed  Google Scholar 

  6. Mori S, van Zijl P (2007) Human white matter atlas. Am J Psychiatry 164:1005

    Article  PubMed  Google Scholar 

  7. Catani M, Dell'acqua F, Vergani F, Malik F, Hodge H, Roy P, Valabregue R, Thiebaut de Schotten M (2012) Short frontal lobe connections of the human brain. Cortex 48:273–291

    Article  PubMed  Google Scholar 

  8. Anwander A, Tittgemeyer M, von Cramon DY, Friederici AD, Knosche TR (2007) Connectivity-based parcellation of Broca's area. Cereb Cortex 17:816–825

    Article  PubMed  CAS  Google Scholar 

  9. Gonzalez-Darder JM, Gonzalez-Lopez P, Talamantes F, Quilis V, Cortes V, Garcia-March G, Roldan P (2010) Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus 28:E5

    Article  PubMed  Google Scholar 

  10. Schmahmann JD, Pandya DN (2007) Cerebral white matter—historical evolution of facts and notions concerning the organization of the fiber pathways of the brain. J Hist Neurosci 16:237–267

    Article  PubMed  Google Scholar 

  11. Broca P (1888) Mémoires sur le cerveau de l'homme et des primates. Reinwald, Paris, pp 739–804

    Google Scholar 

  12. Boling W, Olivier A, Bittar RG, Reutens D (1999) Localization of hand motor activation in Broca's pli de passage moyen. J Neurosurg 91:903–910

    Article  PubMed  CAS  Google Scholar 

  13. Boling WW, Olivier A (2004) Localization of hand sensory function to the pli de passage moyen of Broca. J Neurosurg 101:278–283

    Article  PubMed  Google Scholar 

  14. Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120(Pt 1):141–157

    Article  PubMed  Google Scholar 

  15. Boling W, Parsons M, Kraszpulski M, Cantrell C, Puce A (2008) Whole-hand sensorimotor area: cortical stimulation localization and correlation with functional magnetic resonance imaging. J Neurosurg 108:491–500

    Article  PubMed  Google Scholar 

  16. Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA (2008) Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. NeuroImage 39:62–79

    Article  PubMed  Google Scholar 

  17. Catani M, Thiebaut de Schotten M (2008) A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 44:1105–1132

    Article  PubMed  Google Scholar 

  18. Thiebaut de Schotten M, Ffytche DH, Bizzi A, Dell'acqua F, Allin M, Walshe M, Murray R, Williams SC, Murphy DG, Catani M (2010) Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage

  19. Zhang Y, Zhang J, Oishi K, Faria AV, Jiang H, Li X, Akhter K, Rosa-Neto P, Pike GB, Evans A, Toga AW, Woods R, Mazziotta JC, Miller MI, van Zijl PC, Mori S (2010) Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage 52:1289–1301

    Article  PubMed  Google Scholar 

  20. Kumar A, Juhasz C, Asano E, Sundaram SK, Makki MI, Chugani DC, Chugani HT (2009) Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children. AJNR Am J Neuroradiol 30:1963–1970

    Article  PubMed  CAS  Google Scholar 

  21. Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, van Zijl PC, Hillis AE, Wytik R, Mori S (2005) DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. NeuroImage 26:195–205

    Article  PubMed  Google Scholar 

  22. Bernal B, Altman N (2010) The connectivity of the superior longitudinal fasciculus: a tractography DTI study. Magn Reson Imaging 28:217–225

    Article  PubMed  Google Scholar 

  23. Oishi K, Zilles K, Amunts K, Faria A, Jiang H, Li X, Akhter K, Hua K, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Zhang J, Huang H, Miller MI, van Zijl PC, Mazziotta J, Mori S (2008) Human brain white matter atlas: identification and assignment of common anatomical structures in superficial white matter. NeuroImage 43:447–457

    Article  PubMed  Google Scholar 

  24. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A 96:10422–10427

    Article  PubMed  CAS  Google Scholar 

  25. Koch G, Cercignani M, Pecchioli C, Versace V, Oliveri M, Caltagirone C, Rothwell J, Bozzali M (2010) In vivo definition of parieto-motor connections involved in planning of grasping movements. NeuroImage 51:300–312

    Article  PubMed  Google Scholar 

  26. Dellatolas G, De Agostini M, Jallon P, Poncet M, Rey M, Lellouch J (1988) Mesure de la préférence manuelle par autoquestionnaire dans la population française adulte. Rev Psychol aplliquée 38:117–136

    Google Scholar 

  27. Annett M (1992) Five tests of hand skill. Cortex 28:583–600

    PubMed  CAS  Google Scholar 

  28. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  29. Wiest-Daessle N, Prima S, Morrissey SP, Barillot C (2007) Validation of a new optimisation algorithm for registration tasks in medical imaging. In 4th IEEE International Symposium on Biomedical Imaging. pp 41-44 2007

  30. Coupe P, Yger P, Prima S, Hellier P, Kervrann C, Barillot C (2008) An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27:425–441

    Article  PubMed  CAS  Google Scholar 

  31. Mangin JF, Coulon O, Frouin V (1998) Robust brain segmentation using histogram scale-space analysis and mathematical morphology. MICCAI 1230-1241

  32. Le Goualher G, Barillot C, Bizais Y (1997) Modeling cortical sulci with active ribbons. Int J Pattern Recognit Artif Intell 11:1295–1315

    Article  Google Scholar 

  33. Ono M, Kubik S, Abernathey C (1990) Atlas of the cerebral sulci. Georg Thieme Verlag

  34. Mechouche A, Morandi X, Golbreich C, Gibaud B (2009) A hybrid system using symbolic and numeric knowledge for the semantic annotation of sulco-gyral anatomy in brain MRI images. IEEE Trans Med Imaging 28:1165–1178

    Article  PubMed  Google Scholar 

  35. Fillard P, Pennec X, Arsigny V, Ayache N (2007) Clinical DT-MRI estimation, smoothing, and fiber tracking with log-Euclidean metrics. IEEE Trans Med Imaging 26:1472–1482

    Article  PubMed  Google Scholar 

  36. Fillard P, Souplet JC, Toussaint N (2009) Medical image navigation and research tool by INRIA (MedINRIA 1.9) Tutorial v2.0

  37. Weinstein D, Kindlmann G, Lundberg E (1999) Tensorlines: Advection–diffusion based propagation through diffusion tensor fields. IEEE Visualization pp 249-253

  38. R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienne

    Google Scholar 

  39. Shinoura N, Suzuki Y, Yamada R, Kodama T, Takahashi M, Yagi K (2005) Fibers connecting the primary motor and sensory areas play a role in grasp stability of the hand. NeuroImage 25:936–941

    Article  PubMed  Google Scholar 

  40. Hlustik P, Solodkin A, Gullapalli RP, Noll DC, Small SL (2001) Somatotopy in human primary motor and somatosensory hand representations revisited. Cereb Cortex 11:312–321

    Article  PubMed  CAS  Google Scholar 

  41. Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE, Zilles K (1996) Asymmetry in the human motor cortex and handedness. NeuroImage 4:216–222

    Article  PubMed  CAS  Google Scholar 

  42. Amunts K, Jancke L, Mohlberg H, Steinmetz H, Zilles K (2000) Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia 38:304–312

    Article  PubMed  CAS  Google Scholar 

  43. Imfeld A, Oechslin MS, Meyer M, Loenneker T, Jancke L (2009) White matter plasticity in the corticospinal tract of musicians: a diffusion tensor imaging study. NeuroImage 46:600–607

    Article  PubMed  Google Scholar 

  44. Kertesz A, Geschwind N (1971) Patterns of pyramidal decussation and their relationship to handedness. Arch Neurol 24:326–332

    Article  PubMed  CAS  Google Scholar 

  45. Kertesz A, Polk M, Black S, Howell J (1992) Anatomical asymmetries and functional laterality. Brain 115:589–605

    Article  PubMed  Google Scholar 

  46. Geschwind N (1972) Cerebral dominance and anatomic asymmetry. N Engl J Med 287:194–195

    Article  PubMed  CAS  Google Scholar 

  47. Hagmann P, Cammoun L, Martuzzi R, Maeder P, Clarke S, Thiran JP, Meuli R (2006) Hand preference and sex shape the architecture of language networks. Hum Brain Mapp 27:828–835

    Article  PubMed  Google Scholar 

  48. Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Noppeney U, Koepp MJ, Duncan JS (2006) Hemispheric asymmetries in language-related pathways: a combined functional MRI and tractography study. NeuroImage 32:388–399

    Article  PubMed  Google Scholar 

  49. Buchel C, Raedler T, Sommer M, Sach M, Weiller C, Koch MA (2004) White matter asymmetry in the human brain: a diffusion tensor MRI study. Cereb Cortex 14:945–951

    Article  PubMed  CAS  Google Scholar 

  50. Ellmore TM, Beauchamp MS, Breier JI, Slater JD, Kalamangalam GP, O'Neill TJ, Disano MA, Tandon N (2010) Temporal lobe white matter asymmetry and language laterality in epilepsy patients. NeuroImage 49:2033–2044

    Article  PubMed  Google Scholar 

  51. Vernooij MW, Smits M, Wielopolski PA, Houston GC, Krestin GP, van der Lugt A (2007) Fiber density asymmetry of the arcuate fasciculus in relation to functional hemispheric language lateralization in both right- and left-handed healthy subjects: a combined fMRI and DTI study. NeuroImage 35:1064–1076

    Article  PubMed  CAS  Google Scholar 

  52. Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA (2002) Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology 59:238–244

    Article  PubMed  CAS  Google Scholar 

  53. Pujol J, Lopez-Sala A, Deus J, Cardoner N, Sebastian-Galles N, Conesa G, Capdevila A (2002) The lateral asymmetry of the human brain studied by volumetric magnetic resonance imaging. NeuroImage 17:670–679

    Article  PubMed  Google Scholar 

  54. Sommer IEC (2010) Sex differences in handedness, brain asymmetry, and language lateralization. Cambridge, Massachusetts, pp 277-312

Download references

Acknowledgements

The authors would like to warmly thank Alexandre Abadie for his assistance in setting up the data processing chain, Camille Maumet for her assistance in the asymmetry study and Jean-Christophe Gentric for his review of the manuscript.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Magro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magro, E., Moreau, T., Seizeur, R. et al. Characterization of short white matter fiber bundles in the central area from diffusion tensor MRI. Neuroradiology 54, 1275–1285 (2012). https://doi.org/10.1007/s00234-012-1073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-012-1073-1

Keywords

Navigation