Skip to main content
Log in

FLAIR vascular hyperintensities and dynamic 4D angiograms for the estimation of collateral blood flow in posterior circulation occlusion

  • Diagnostic Neuroradiology
  • Published:
Neuroradiology Aims and scope Submit manuscript

Abstract

Introduction

The objectives of this paper are to assess collateral blood flow in posterior circulation occlusion by MRI-based approaches (fluid-attenuated inversion recovery (FLAIR) vascular hyperintensities (FVHs), collateralization on dynamic 4D angiograms) and investigate its relation to ischemic lesion size and growth.

Methods

In 28 patients with posterior cerebral artery (PCA) and 10 patients with basilar artery (BA) occlusion, MRI findings were analyzed, with emphasis on distal FVH and collateralization on dynamic 4D angiograms.

Results

In PCA occlusion, distal FVH was observed in 18/29 (62.1 %), in BA occlusion, in 8/10 (80 %) cases. Collateralization on dynamic 4D angiograms was graded 1 in 8 (27.6 %) patients, 2 in 1 (3.4 %) patient, 3 in 12 (41.4 %) patients, and 4 in 8 (27.6 %) patients with PCA occlusion and 0 in 1 (10 %) patient, 2 in 3 (30 %) patients, 3 in 1 (10 %) patient, and 4 in 5 (50 %) patients with BA occlusion. FVH grade showed neither correlation with initial or follow-up diffusion-weighted image (DWI) lesion size nor DWI–perfusion-weighted imaging (PWI) mismatch ratio. Collateralization on dynamic 4D angiograms correlated inversely with initial DWI lesion size and moderately with the DWI–(PWI) mismatch ratio. The combination of distal FVH and collateralization grade on dynamic 4D angiograms correlated inversely with initial as well as follow-up DWI lesion size and highly with the DWI–PWI mismatch ratio.

Conclusions

In posterior circulation occlusion, FVH is a frequent finding, but its prognostic value is limited. Dynamic 4D angiograms are advantageous to examine and graduate collateral blood flow. The combination of both parameters results in an improved characterization of collateral blood flow and might have prognostic relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bogousslavsky J, Van Melle G, Regli F (1988) The Lausanne stroke registry: analysis of 1,000 consecutive patients with first stroke. Stroke 19:1083–1092

    Article  CAS  PubMed  Google Scholar 

  2. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C (1991) Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet 337:1521–1526

    Article  CAS  PubMed  Google Scholar 

  3. Caplan L, Chung CS, Wityk R, Glass T, Tapia J, Pazdera L, Chang HM, Dashe J, Chaves C, Vemmos K, Leary M, Dewitt L, Pessin M (2005) New England medical center posterior circulation stroke registry: I. Methods, data base, distribution of brain lesions, stroke mechanisms, and outcomes. J Clin Neurol 1:14–30

    Article  PubMed Central  PubMed  Google Scholar 

  4. Förster A, Griebe M, Gass A, Hennerici MG, Szabo K (2011) Recent advances in magnetic resonance imaging in posterior circulation stroke: implications for diagnosis and prognosis. Curr Treat Options Cardiovasc Med 13:268–277

    Article  PubMed  Google Scholar 

  5. Förster A, Gass A, Kern R, Wolf ME, Hennerici MG, Szabo K (2011) MR imaging-guided intravenous thrombolysis in posterior cerebral artery stroke. AJNR Am J Neuroradiol 32:419–421

    Article  PubMed  Google Scholar 

  6. Miteff F, Levi CR, Bateman GA, Spratt N, McElduff P, Parsons MW (2009) The independent predictive utility of computed tomography angiographic collateral status in acute ischaemic stroke. Brain 132:2231–2238

    Article  PubMed  Google Scholar 

  7. Menon BK, O'Brien B, Bivard A, Spratt NJ, Demchuk AM, Miteff F, Lu X, Levi C, Parsons MW (2013) Assessment of leptomeningeal collaterals using dynamic CT angiography in patients with acute ischemic stroke. J Cereb Blood Flow Metab 33:365–371

    Article  PubMed Central  PubMed  Google Scholar 

  8. Azizyan A, Sanossian N, Mogensen MA, Liebeskind DS (2011) Fluid-attenuated inversion recovery vascular hyperintensities: an important imaging marker for cerebrovascular disease. AJNR Am J Neuroradiol 32:1771–1775

    Article  CAS  PubMed  Google Scholar 

  9. Hermier M, Nighoghossian N, Derex L, Wiart M, Nemoz C, Berthezene Y, Froment JC (2005) Hypointense leptomeningeal vessels at T2*-weighted MRI in acute ischemic stroke. Neurology 65:652–653

    Article  CAS  PubMed  Google Scholar 

  10. Hermier M, Ibrahim AS, Wiart M, Adeleine P, Cotton F, Dardel P, Derex L, Berthezene Y, Nighoghossian N, Froment JC (2003) The delayed perfusion sign at MRI. J Neuroradiol 30:172–179

    CAS  PubMed  Google Scholar 

  11. Campbell BC, Christensen S, Tress BM, Churilov L, Desmond PM, Parsons MW, Barber PA, Levi CR, Bladin C, Donnan GA, Davis SM (2013) Failure of collateral blood flow is associated with infarct growth in ischemic stroke. J Cereb Blood Flow Metab 33:1168–1172

    Article  PubMed Central  PubMed  Google Scholar 

  12. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA (2000) Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 31:680–687

    Article  CAS  PubMed  Google Scholar 

  13. Chng SM, Petersen ET, Zimine I, Sitoh YY, Lim CC, Golay X (2008) Territorial arterial spin labeling in the assessment of collateral circulation: comparison with digital subtraction angiography. Stroke 39:3248–3254

    Article  PubMed  Google Scholar 

  14. Wu B, Wang X, Guo J, Xie S, Wong EC, Zhang J, Jiang X, Fang J (2008) Collateral circulation imaging: MR perfusion territory arterial spin-labeling at 3T. AJNR Am J Neuroradiol 29:1855–1860

    Article  CAS  PubMed  Google Scholar 

  15. Cosnard G, Duprez T, Grandin C, Smith AM, Munier T, Peeters A (1999) Fast FLAIR sequence for detecting major vascular abnormalities during the hyperacute phase of stroke: a comparison with MR angiography. Neuroradiology 41:342–346

    Article  CAS  PubMed  Google Scholar 

  16. Iancu-Gontard D, Oppenheim C, Touze E, Meary E, Zuber M, Mas JL, Fredy D, Meder JF (2003) Evaluation of hyperintense vessels on FLAIR MRI for the diagnosis of multiple intracerebral arterial stenoses. Stroke 34:1886–1891

    Article  PubMed  Google Scholar 

  17. Yoshioka K, Ishibashi S, Shiraishi A, Yokota T, Mizusawa H (2012) Distal hyperintense vessels on FLAIR images predict large-artery stenosis in patients with transient ischemic attack. Neuroradiology 55(2):165–169

    Article  PubMed  Google Scholar 

  18. Wolf RL (2001) Intraarterial signal on fluid-attenuated inversion recovery images: a measure of hemodynamic stress? AJNR Am J Neuroradiol 22:1015–1016

    CAS  PubMed  Google Scholar 

  19. Sanossian N, Saver JL, Alger JR, Kim D, Duckwiler GR, Jahan R, Vinuela F, Ovbiagele B, Liebeskind DS (2009) Angiography reveals that fluid-attenuated inversion recovery vascular hyperintensities are due to slow flow, not thrombus. AJNR Am J Neuroradiol 30:564–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lee KY, Latour LL, Luby M, Hsia AW, Merino JG, Warach S (2009) Distal hyperintense vessels on FLAIR: an MRI marker for collateral circulation in acute stroke? Neurology 72:1134–1139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Haussen DC, Koch S, Saraf-Lavi E, Shang T, Dharmadhikari S, Yavagal DR (2013) FLAIR distal hyperintense vessels as a marker of perfusion-diffusion mismatch in acute stroke. J Neuroimaging 23:397–400

    Article  PubMed  Google Scholar 

  22. Maeda M, Yamamoto T, Daimon S, Sakuma H, Takeda K (2001) Arterial hyperintensity on fast fluid-attenuated inversion recovery images: a subtle finding for hyperacute stroke undetected by diffusion-weighted MR imaging. AJNR Am J Neuroradiol 22:632–636

    CAS  PubMed  Google Scholar 

  23. Toyoda K, Ida M, Fukuda K (2001) Fluid-attenuated inversion recovery intraarterial signal: an early sign of hyperacute cerebral ischemia. AJNR Am J Neuroradiol 22:1021–1029

    CAS  PubMed  Google Scholar 

  24. Seo KD, Lee KO, Choi YC, Kim WJ, Lee KY (2013) Fluid-attenuated inversion recovery hyperintense vessels in posterior cerebral artery infarction. Cerebrovasc Dis Extra 3:46–54

    Article  PubMed Central  PubMed  Google Scholar 

  25. Wu J, Tarabishy B, Hu J, Miao Y, Cai Z, Xuan Y, Behen M, Li M, Ye Y, Shoskey R, Haacke EM, Juhasz C (2011) Cortical calcification in Sturge-Weber syndrome on MRI-SWI: relation to brain perfusion status and seizure severity. J Magn Reson Imaging 34:791–798

    Article  PubMed Central  PubMed  Google Scholar 

  26. Tatu L, Moulin T, Bogousslavsky J, Duvernoy H (1996) Arterial territories of human brain: brainstem and cerebellum. Neurology 47:1125–1135

    Article  CAS  PubMed  Google Scholar 

  27. Tatu L, Moulin T, Bogousslavsky J, Duvernoy H (1998) Arterial territories of the human brain: cerebral hemispheres. Neurology 50:1699–1708

    Article  CAS  PubMed  Google Scholar 

  28. Rosset A, Spadola L, Ratib O (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging 17:205–216

    Article  PubMed Central  PubMed  Google Scholar 

  29. Tsushima Y, Endo K (2001) Significance of hyperintense vessels on FLAIR MRI in acute stroke. Neurology 56:1248–1249

    Article  CAS  PubMed  Google Scholar 

  30. Gawlitza M, Gragert J, Quaschling U, Hoffmann KT (2014) FLAIR-hyperintense vessel sign, diffusion-perfusion mismatch and infarct growth in acute ischemic stroke without vascular recanalisation therapy. J Neuroradiol

  31. Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B, Barr J, Dillon W, Warach S, Broderick J, Tilley B, Sacks D (2003) Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke. Stroke 34:e109–e137

    Article  PubMed  Google Scholar 

  32. Cross DT III, Moran CJ, Akins PT, Angtuaco EE, Derdeyn CP, Diringer MN (1998) Collateral circulation and outcome after basilar artery thrombolysis. AJNR Am J Neuroradiol 19:1557–1563

    PubMed  Google Scholar 

  33. Brozici M, van der ZA, Hillen B (2003) Anatomy and functionality of leptomeningeal anastomoses: a review. Stroke 34:2750–2762

    Article  PubMed  Google Scholar 

  34. Weidner W, Crandall P, Hanafee W, Tomiyasu U (1965) Collateral circulation in the posterior fossa via leptomeningeal anastomoses. Am J Roentgenol Radium Ther Nucl Med 95:831–836

    Article  CAS  PubMed  Google Scholar 

  35. Kamran S, Bates V, Bakshi R, Wright P, Kinkel W, Miletich R (2000) Significance of hyperintense vessels on FLAIR MRI in acute stroke. Neurology 55:265–269

    Article  CAS  PubMed  Google Scholar 

  36. Cheng B, Ebinger M, Kufner A, Kohrmann M, Wu O, Kang DW, Liebeskind D, Tourdias T, Singer OC, Christensen S, Warach S, Luby M, Fiebach JB, Fiehler J, Gerloff C, Thomalla G (2012) Hyperintense vessels on acute stroke fluid-attenuated inversion recovery imaging: associations with clinical and other MRI findings. Stroke 43:2957–2961

    Article  PubMed Central  PubMed  Google Scholar 

  37. Schellinger PD, Chalela JA, Kang DW, Latour LL, Warach S (2005) Diagnostic and prognostic value of early MR Imaging vessel signs in hyperacute stroke patients imaged <3 hours and treated with recombinant tissue plasminogen activator. AJNR Am J Neuroradiol 26:618–624

    PubMed  Google Scholar 

  38. Huang X, Liu W, Zhu W, Ni G, Sun W, Ma M, Zhou Z, Wang Q, Xu G, Liu X (2012) Distal hyperintense vessels on FLAIR: a prognostic indicator of acute ischemic stroke. Eur Neurol 68:214–220

    Article  PubMed  Google Scholar 

  39. Hohenhaus M, Schmidt WU, Brunecker P, Xu C, Hotter B, Rozanski M, Fiebach JB, Jungehulsing GJ (2012) FLAIR vascular hyperintensities in acute ICA and MCA infarction: a marker for mismatch and stroke severity? Cerebrovasc Dis 34:63–69

    Article  CAS  PubMed  Google Scholar 

  40. Ebinger M, Kufner A, Galinovic I, Brunecker P, Malzahn U, Nolte CH, Endres M, Fiebach JB (2012) Fluid-attenuated inversion recovery images and stroke outcome after thrombolysis. Stroke 43:539–542

    Article  PubMed  Google Scholar 

  41. Shuaib A, Butcher K, Mohammad AA, Saqqur M, Liebeskind DS (2011) Collateral blood vessels in acute ischaemic stroke: a potential therapeutic target. Lancet Neurol 10:909–921

    Article  PubMed  Google Scholar 

Download references

Ethical standards and patient consent

We declare that all human and animal studies have been approved by the Medizinische Ethikkommission II der Medizinischen Fakultät Mannheim and have therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. Patient consent was waived for this retrospective study; however, MRI studies were performed with informed consent of the patient or the patient’s relatives.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Förster.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Förster, A., Wenz, H., Kerl, H.U. et al. FLAIR vascular hyperintensities and dynamic 4D angiograms for the estimation of collateral blood flow in posterior circulation occlusion. Neuroradiology 56, 697–707 (2014). https://doi.org/10.1007/s00234-014-1382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00234-014-1382-7

Keywords

Navigation