Skip to main content
Log in

The Molecular Phylogeny of a Nematode-Specific Clade of Heterotrimeric G-Protein α-Subunit Genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In animal olfactory systems, odorant molecules are detected by olfactory receptors (ORs). ORs are part of the G-protein-coupled receptor (GPCR) superfamily. Heterotrimeric guanine nucleotide binding G-proteins (G-proteins) relay signals from GPCRs to intracellular effectors. G-proteins are comprised of three peptides. The G-protein α subunit confers functional specificity to G-proteins. Vertebrate and insect Gα-subunit genes are divided into four subfamilies based on functional and sequence attributes. The nematode Caenorhabditis elegans contains 21 Gα genes, 14 of which are exclusively expressed in sensory neurons. Most individual mammalian cells express multiple distinct GPCR gene products, however, individual mammalian and insect olfactory neurons express only one functional odorant OR. By contrast C. elegans expresses multiple ORs and multiple Gα subunits within each olfactory neuron. Here we show that, in addition to having at least one member of each of the four mammalian Gα gene classes, C. elegans and other nematodes also possess two lineage-specific Gα gene expansions, homologues of which are not found in any other organisms examined. We hypothesize that these novel nematode-specific Gα genes increase the functional complexity of individual chemosensory neurons, enabling them to integrate odor signals from the multiple distinct ORs expressed on their membranes. This neuronal gene expansion most likely occurred in nematodes to enable them to compensate for the small number of chemosensory cells and the limited emphasis on cephalization during nematode evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–402

    Article  PubMed  CAS  Google Scholar 

  • Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science 282:2028–2033

    Article  PubMed  CAS  Google Scholar 

  • Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527

    Article  PubMed  CAS  Google Scholar 

  • Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH (2000) A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics 155:85–104

    PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127

    Article  PubMed  CAS  Google Scholar 

  • Coburn CM, Bargmann CI (1996) A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans. Neuron 17:695–706

    Article  PubMed  CAS  Google Scholar 

  • Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269

    PubMed  CAS  Google Scholar 

  • Cuppen E, van der Linden AM, Jansen G, Plasterk RHA (2003) Proteins interacting with Caenorhabditis elegans Gα subunits. Comp Funct Genomics 4(5):479–491

    Article  CAS  Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt B (1978) A model of evolutionary changes in proteins. In: Dayhoff MO (ed) Atlas of protein sequences and structure. National Biomedical Research Foundation, Washington, DC, pp 345–352

    Google Scholar 

  • Goldman AL, Van der Goes van Naters W, Lessing D, Warr CG, Carlson JR (2005) Coexpression of two functional odor receptors in one neuron. Neuron 45:661–666

    Article  PubMed  CAS  Google Scholar 

  • Gomperts BD, Kramer IM, Tatham PE (2002) Signal transduction. Elsevier Academic Press, San Diego, CA

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Hodgkin J, (2001) What does a worm want with 20,000 genes? Genome Biol 2(11): 20081–20084 (comment)

    Article  Google Scholar 

  • Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432:618–622

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Jansen G, Thijssen KL, Werner P, van der Horst M, Hazendonk E, Plasterk RH (1999) The complete family of genes encoding G-proteins of Caenorhabditis elegans. Nat Genet 21:414–419

    Article  PubMed  CAS  Google Scholar 

  • Lans H, Rademakers S, Jansen G (2004) A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans. Genetics 167:1677–1687

    Article  PubMed  CAS  Google Scholar 

  • Lespinet O, Wolf YI, Koonin EV, Aravind L (2002) The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 12:1048–1059

    Article  PubMed  CAS  Google Scholar 

  • L’Etoile ND, Bargmann CI (2000) Olfaction and odor discrimination are mediated by the C. elegans guanylyl cyclase ODR-1. Neuron 25:575–586

    Article  PubMed  CAS  Google Scholar 

  • Mongan NP, Baylis HA, Adcock C, Smith GR, Sansom MS, Sattelle DB (1998) An extensive and diverse gene family of nicotinic acetylcholine receptor alpha subunits in Caenorhabditis elegans. Recept Chan 6:213–228

    CAS  Google Scholar 

  • Parkinson J, Whitton C, Schmid R, Thomson M, Blaxter M (2004) NEMBASE: a resource for parasitic nematode ESTs. Nucleic Acids Res 32:D427–D430

    Article  PubMed  CAS  Google Scholar 

  • Prasad BC, Reed RR (1999) Chemosensation: molecular mechanisms in worms and mammals. Trends Genet 15:150–153

    Article  PubMed  CAS  Google Scholar 

  • Rens-Domiano S, Hamm HE (1995) Structural and functional relationships of heterotrimeric G-proteins. FASEB J 9:1059–1066

    PubMed  CAS  Google Scholar 

  • Roayaie K, Crump JG, Sagasti A, Bargmann CI (1998) The G alpha protein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis in C. elegans olfactory neurons. Neuron 20:55–67

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM (1998) Two large families of chemoreceptor genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae reveal extensive gene duplication, diversification, movement, and intron loss. Genome Res 8:449–463

    PubMed  CAS  Google Scholar 

  • Robinson-Rechavi M, Maina CV, Gissendanner CR, Laudet V, Sluder A (2005) Explosive lineage-specific expansion of the orphan nuclear receptor HNF4 in nematodes. J Mol Evol 60:577–586

    Article  PubMed  CAS  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P, Chou JH, Bargmann CI (1996) odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl. Cell 84:899–909

    Article  PubMed  CAS  Google Scholar 

  • Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M, Yoshihara Y, Sakano H (2003) Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302:2088–2094

    Article  PubMed  CAS  Google Scholar 

  • Simon MI, Strathmann MP, Gautam N (1991) Diversity of G-proteins in signal transduction. Science 252:802–808

    PubMed  CAS  Google Scholar 

  • Sprang SR (1997) G-protein mechanisms: insights from structural analysis. Annu Rev Biochem 66:639–678

    Article  PubMed  CAS  Google Scholar 

  • Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D’Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1:E45

    Article  PubMed  Google Scholar 

  • Strathmann M, Simon MI (1990) G-protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci USA 87:9113–9117

    Article  PubMed  CAS  Google Scholar 

  • Strathmann MP, Simon MI (1991) G alpha 12 and G alpha 13 subunits define a fourth class of G-protein alpha subunits. Proc Natl Acad Sci USA 88:5582–5586

    Article  PubMed  CAS  Google Scholar 

  • Suga H, Koyanagi M, Hoshiyama D, Ono K, Iwabe N, Kuma K, Miyata T (1999) Extensive gene duplication in the early evolution of animals before the parazoan-eumetazoan split demonstrated by G-proteins and protein tyrosine kinases from sponge and hydra. J Mol Evol 48:646–653

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Tobin D, Madsen D, Kahn-Kirby A, Peckol E, Moulder G, Barstead R, Maricq A, Bargmann C (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35:307–318

    Article  PubMed  CAS  Google Scholar 

  • Troemel ER, Chou JH, Dwyer ND, Colbert HA, Bargmann CI (1995) Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83:207–218

    Article  PubMed  CAS  Google Scholar 

  • Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, Axel R (1999) A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96:725–736

    Article  PubMed  CAS  Google Scholar 

  • Wei A, Jegla T, Salkoff L (1996) Eight potassium channel families revealed by the C. elegans genome project. Neuropharmacology 35:805–829

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Firestein S (2002) The olfactory receptor gene superfamily of the mouse. Nat Neurosci 5:124–133

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Irish Higher Education Authority Programme for Research in Third Level. Many thanks go to Dr. Ralf Schmid for sending us the clustered version of NEMBASE. The authors wish to acknowledge the SFI/HEA Irish Centre for High-End Computing (ICHEC) for the provision of computational facilities and support. Supplementary material can be found at http://www.biology.nuim.ie/staff/JMESupp.shtml.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Burnell.

Additional information

[Reviewing Editor: Dr. John Oakeshott]

Damien M. O’Halloran and David A. Fitzpatrick contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Halloran, D.M., Fitzpatrick, D.A., McCormack, G.P. et al. The Molecular Phylogeny of a Nematode-Specific Clade of Heterotrimeric G-Protein α-Subunit Genes. J Mol Evol 63, 87–94 (2006). https://doi.org/10.1007/s00239-005-0215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0215-z

Keywords

Navigation