Skip to main content
Log in

Wellposedness and Decay Rates for the Cauchy Problem of the Moore–Gibson–Thompson Equation Arising in High Intensity Ultrasound

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this paper, we study the Moore–Gibson–Thompson equation in \(\mathbb {R}^N\), which is a third order in time equation that arises in viscous thermally relaxing fluids and also in viscoelastic materials (then under the name of standard linear viscoelastic model). First, we use some Lyapunov functionals in the Fourier space to show that, under certain assumptions on some parameters in the equation, a norm related to the solution decays with a rate \((1+t)^{-N/4}\). Since the decay of the previous norm does not give the decay rate of the solution itself then, in the second part of the paper, we show an explicit representation of the solution in the frequency domain by analyzing the eigenvalues of the Fourier image of the solution and writing the solution accordingly. We use this eigenvalues expansion method to give the decay rate of the solution (and also of its derivatives), which results in \((1+t)^{1-N/4}\) for \(N=1,2\) and \((1+t)^{1/2-N/4}\) when \(N\ge 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Alves, M.S., Buriol, C., Ferreira, M.V., Muñoz Rivera, J.E., Sepúlveda, M., Vera, O.: Asymptotic behaviour for the vibrations modeled by the standard linear solid model with a thermal effect. J. Math. Anal. Appl. 399(2), 472–479 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    MATH  Google Scholar 

  3. Conejero, J.A., Lizama, C., Ródenas, F.: Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation. App. Math. Inf. Sci. 9(5), 1–6 (2015)

    MathSciNet  Google Scholar 

  4. Coulouvrat, F.: On the equations of nonlinear acoustics. J. Acoust. 5, 321–359 (1992)

    Google Scholar 

  5. Davis, J.L.: Mathematics of Wave Propagation. Princeton University Press, Princeton (2000)

    MATH  Google Scholar 

  6. Fung, Y.C.: A First Course in Continuum Mechanics: For Physical and Biological Engineers and Scientists. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  7. Gorain, G.C.: Stabilization for the vibrations modeled by the standard linear model of viscoelasticity. Proc. Indian Acad. Sci. (Math. Sci.) 120(4), 495–506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ide, K., Haramoto, K., Kawashima, S.: Decay property of regularity-loss type for dissipative Timoshenko system. Math. Models Methods Appl. Sci. 18(5), 647–667 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ikehata, R.: New decay estimates for linear damped wave equations and its application to nonlinear problem. Math. Methods Appl. Sci. 27(8), 865–889 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jordan, P.M.: Second-sound phenomena in inviscid, thermally relaxing gases. Discret. Contin. Dyn. Syst. Ser. B 19(7), 2189–2205 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaltenbacher, B., Lasiecka, I., Marchand, R.: Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound. Control Cybern. 40, 971–988 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Kaltenbacher, B., Lasiecka, I., Pospieszalska, M.K.: Well-posedness and exponential decay of the energy in the nonlinear Jordan–Moore–Gibson–Thompson equation arising in high intensity ultrasound. Math. Models Methods Appl. Sci. 22(11), 1250035 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuznetsov, V.P.: Equations of nonlinear acoustics. Sov. Phys. Acoust. 16(4), 467 (1971)

    Google Scholar 

  14. Lasiecka, I., Wang, X.: Moore-Gibson-Thompson equation with memory, part I: exponential decay of energy. Z. Angew. Math. Phys. 67(2), 17 (2016). https://doi.org/10.1007/s00033-015-0597-8.

  15. Lasiecka, I., Wang, X.: Moore–Gibson–Thompson equation with memory, part II: general decay of energy. J. Differ. Equ. 259, 7610–7635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marchand, R., McDevitt, T., Triggiani, R.: An abstract semigroup approach to the third-order Moore–Gibson–Thompson partial differential equation arising in high-intensity ultrasound: structural decomposition, spectral analysis, exponential stability. Math. Methods. Appl. Sci. 35(15), 1896–1929 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    Google Scholar 

  18. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  19. Pellicer, M., Solà-Morales, J.: Analysis of a viscoelastic spring-mass model. J. Math. Anal. Appl. 294(2), 687–698 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pellicer, M., Solà-Morales, J.: Optimal scalar products in the standard linear viscoelastic model. Evol. Equ. Contr. Theor. (accepted)

  21. Rabotnov, Y.N.: Elements of Hereditary Solid Mechanics. MIR Publication, Moscow (1980)

    MATH  Google Scholar 

  22. Treeby, B.E., Jiri, J., Alistair, B.T.R., Cox, P.: Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. J. Acoust. Soc. Am. 131(6), 4324–4336 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Dr. R. Racke and also Prof. Dr. J. Solà-Morales for their helpful discussions on the problem. This work is partially supported by the Grants MTM2014-52402-C3-3-P (Spain) and MPC UdG 2016/047 (U. de Girona, Catalonia). Also, M. Pellicer is part of the Catalan research group 2014 SGR 1083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Said-Houari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellicer, M., Said-Houari, B. Wellposedness and Decay Rates for the Cauchy Problem of the Moore–Gibson–Thompson Equation Arising in High Intensity Ultrasound. Appl Math Optim 80, 447–478 (2019). https://doi.org/10.1007/s00245-017-9471-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-017-9471-8

Keywords

Mathematics Subject Classification

Navigation