Skip to main content
Log in

Genetic and Functional Analysis of the NKX2-5 Gene Promoter in Patients With Ventricular Septal Defects

  • Original Article
  • Published:
Pediatric Cardiology Aims and scope Submit manuscript

Abstract

The ventricular septal defect (VSD) is the most common type of congenital heart disease (CHD). The morbidity and mortality of CHD patients are significantly higher due to late cardiac complications, likely caused by genetic defects. Mutations in cardiac transcription factor genes such as GATA-4, TBX5, and NKX2-5 have been implicated in CHD cases. The NKX2-5 gene, a homeobox gene, is expressed in the developing heart and the adult heart. Because NKX2-5 is a dosage-sensitive regulator during embryonic development, the authors hypothesized that the expression levels of the NKX2-5 gene rather than the mutant protein may play important roles in CHD. In this study, the promoter regions and exon regions of the NKX2-5 gene were bidirectionally sequenced in large cohorts of VSD patients and healthy control subjects. The results showed that a novel sequence variant (g.4574c>deletion), found only in one VSD patient, and a single nucleotide polymorphism (rs118026695), the frequency of which was significantly higher in VSD patients, were identified within the promoter region. Functional analysis confirmed that these sequence variants significantly enhanced the transcriptional activities of the NKX2-5 gene promoter, altering the expression of the NKX2-5 gene and the cardiac gene regulatory network. In addition, a synonymous mutation in the second exon of the NKX2-5 gene was identified in one VSD patient, which may affect the translation process. Therefore, the authors’ data provide supportive evidence that mutations in the coding region of the NKX2-5 gene and sequence variants within its promoter region may be among the contributors to the CHD etiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akazawa H, Komuro I (2005) Cardiac transcription factor Csx/Nkx2-5: its role in cardiac development and diseases. Pharmacol Ther 107:252–268

    Article  PubMed  CAS  Google Scholar 

  2. Alappat S, Zhang ZY, Chen YP (2003) Msx homeobox gene family and craniofacial development. Cell Res 13:429–442

    Article  PubMed  CAS  Google Scholar 

  3. Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, Seidman CE, Plowden J, Kugler JD (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104:1567–1573

    Article  PubMed  CAS  Google Scholar 

  4. Biben C, Weber R, Kesteven S, McDonald L, Elliott DA, Barnett L, Köentgen F, Robb L, Feneley M, Harvey RP (2000) Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res 87:888–895

    Article  PubMed  CAS  Google Scholar 

  5. Briggs LE, Takeda M, Cuadra AE, Wakimoto H, Marks MH, Walker AJ, Seki T, Oh SP, Lu JT, Sumners C, Raizada MK, Horikoshi N, Weinberg EO, Yasui K, Ikeda Y, Chien KR, Kasahara H (2008) Perinatal loss of Nkx2-5 results in rapid conduction and contraction defects. Circ Res 103:580–590

    Article  PubMed  CAS  Google Scholar 

  6. Bruneau BG (2008) The developmental genetics of congenital heart disease. Nature 451:943–948

    Article  PubMed  CAS  Google Scholar 

  7. Chen CY, Schwartz RJ (1996) Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol 16:6372–6384

    PubMed  CAS  Google Scholar 

  8. Dupays L, Jarry-Guichard T, Mazurais D, Calmels T, Izumo S, Gros D, Théveniau-Ruissy M (2005) Dysregulation of connexins and inactivation of NFATc1 in the cardiovascular system of NKX2-5 null mutants. J Mol Cell Cardiol 38:787–798

    Article  PubMed  CAS  Google Scholar 

  9. Durocher D, Chen CY, Ardati A, Schwartz RJ, Nemer M (1996) The atrial natriuretic factor promoter is a downstream target for Nkx-2.5 in the myocardium. Mol Cell Biol 16:4648–4655

    PubMed  CAS  Google Scholar 

  10. Eckert D, Buhl S, Weber S, Jäger R, Schorle H (2005) The AP-2 family of transcription factors. Genome Biol 6:246

    Article  PubMed  Google Scholar 

  11. Espinoza-Lewis RA, Liu H, Sun C, Chen C, Jiao K, Chen Y (2011) Ectopic expression of NKX2.5 suppresses the formation of the sinoatrial node in mice. Dev Biol 356:359–369

    Article  PubMed  CAS  Google Scholar 

  12. He A, Kong SW, Ma Q, Pu WT (2011) Co-occupancy by multiple cardiac transcription factors identifies transcriptional enhancers active in heart. Proc Natl Acad Sci USA 108:5632–5637

    Article  PubMed  CAS  Google Scholar 

  13. Hiroi Y, Kudoh S, Monzen K, Ikeda Y, Yazaki Y, Nagai R, Komuro I (2001) Tbx5 associates with Nkx2-5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280

    Article  PubMed  CAS  Google Scholar 

  14. Hsu T, Trojanowska M, Watson DK (2004) Ets proteins in biological control and cancer. J Cell Biochem 91:896–903

    Article  PubMed  CAS  Google Scholar 

  15. Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka M, Kupershmidt S, Roden DM, Schultheiss TM, O’Brien TX, Gourdie RG, Berul CI, Izumo S (2004) Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest 113:1130–1137

    PubMed  CAS  Google Scholar 

  16. Jay PY, Rozhitskaya O, Tarnavski O, Sherwood MC, Dorfman AL, Lu Y, Ueyama T, Izumo S (2005) Haploinsufficiency of the cardiac transcription factor Nkx2-5 variably affects the expression of putative target genes. FASEB J 19:1495–1497

    PubMed  CAS  Google Scholar 

  17. Lien CL, Wu C, Mercer B, Webb R, Richardson JA, Olson EN (1999) Control of early cardiac-specific transcription of Nkx2-5 by a GATA-dependent enhancer. Development 126:75–84

    PubMed  CAS  Google Scholar 

  18. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5. Genes Dev 9:1654–1666

    Article  PubMed  CAS  Google Scholar 

  19. Pashmforoush M, Lu JT, Chen H, Amand TS, Kondo R, Pradervand S, Evans SM, Clark B, Feramisco JR, Giles W, Ho SY, Benson DW, Silberbach M, Shou W, Chien KR (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117:373–386

    Article  PubMed  CAS  Google Scholar 

  20. Pierpont ME, Basson CT, Benson DW Jr, Gelb BD, Giglia TM, Goldmuntz E, McGee G, Sable CA, Srivastava D, Webb CL, American Heart Association Congenital Cardiac Defects Committee Council on Cardiovascular Disease in the Young (2007) Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics. Circulation 115:3015–3038

    Article  PubMed  Google Scholar 

  21. Polager S, Ginsberg D (2008) E2F: at the crossroads of life and death. Trends Cell Biol 18:528–535

    Article  PubMed  CAS  Google Scholar 

  22. Przybylski GK, Dik WA, Grabarczyk P, Wanzeck J, Chudobska P, Jankowski K, von Bergh A, van Dongen JJ, Schmidt CA, Langerak AW (2006) The effect of a novel recombination between the homeobox gene NKX2-5 and the TRD locus in T-cell acute lymphoblastic leukemia on activation of the NKX2-5 gene. Haematologica 91:317–321

    PubMed  CAS  Google Scholar 

  23. Reamon-Buettner SM, Borlak J (2010) NKX2-5: an update on this hypermutable homeodomain protein and its role in human congenital heart disease (CHD). Hum Mutat 31:1185–1194

    Article  PubMed  CAS  Google Scholar 

  24. Reecy JM, Li X, Yamada M, DeMayo FJ, Newman CS, Harvey RP, Schwartz RJ (1999) Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2-5. Development 126:839–849

    PubMed  CAS  Google Scholar 

  25. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691

    Article  PubMed  CAS  Google Scholar 

  26. Schlokat U, Bohmann D, Schöler H, Gruss P (1986) Nuclear factors binding specific sequences within the immunoglobulin enhancer interact differentially with other enhancer elements. EMBO J 5:3251–3258

    PubMed  CAS  Google Scholar 

  27. Shiojima I, Oka T, Hiroi Y, Nagai R, Yazaki Y, Komuro I (2000) Transcriptional regulation of human cardiac homeobox gene CSX1. Biochem Biophys Res Commun 272:749–757

    Article  PubMed  CAS  Google Scholar 

  28. Small EM, Krieg PA (2003) Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: NKX2-5 and GATA-4 binding sites are required for atrial-specific expression of ANF. Dev Biol 261:116–131

    Article  PubMed  CAS  Google Scholar 

  29. Stallmeyer B, Fenge H, Nowak-Göttl U, Schulze-Bahr E (2010) Mutational spectrum in the cardiac transcription factor gene NKX2.5 (CSX) associated with congenital heart disease. Clin Genet 78:533–540

    Article  PubMed  CAS  Google Scholar 

  30. Takeuchi JK, Lou X, Alexander JM, Sugizaki H, Delgado-Olguín P, Holloway AK, Mori AD, Wylie JN, Munson C, Zhu Y, Zhou YQ, Yeh RF, Henkelman RM, Harvey RP, Metzger D, Chambon P, Stainier DY, Pollard KS, Scott IC, Bruneau BG (2011) Chromatin remodelling complex dosage modulates transcription factor function in heart development. Nat Commun 2:187

    Article  PubMed  Google Scholar 

  31. Tanaka M, Wechsler SB, Lee IW, Yamasaki N, Lawitts JA, Izumo S (1999) Complex modular cis-acting elements regulate expression of the cardiac-specifying homeobox gene Csx/Nkx2.5. Development 126:1439–1450

    PubMed  CAS  Google Scholar 

  32. Terada R, Warren S, Lu JT, Chien KR, Wessels A, Kasahara H (2011) Ablation of Nkx2-5 at mid-embryonic stage results in premature lethality and cardiac malformation. Cardiovasc Res 91:289–299

    Article  PubMed  CAS  Google Scholar 

  33. Toko H, Zhu W, Takimoto E, Shiojima I, Hiroi Y, Zou Y, Oka T, Akazawa H, Mizukami M, Sakamoto M, Terasaki F, Kitaura Y, Takano H, Nagai T, Nagai R, Komuro I (2002) Csx/Nkx2-5 is required for homeostasis and survival of cardiac myocytes in the adult heart. J Biol Chem 277:24735–24743

    Article  PubMed  CAS  Google Scholar 

  34. van der Bom T, Zomer AC, Zwinderman AH, Meijboom FJ, Bouma BJ, Mulder BJ (2011) The changing epidemiology of congenital heart disease. Nat Rev Cardiol 8:50–60

    Article  PubMed  Google Scholar 

  35. Verheugt CL, Uiterwaal CS, van der Velde ET, Meijboom FJ, Pieper PG, van Dijk AP, Vliegen HW, Grobbee DE, Mulder BJ (2010) Mortality in adult congenital heart disease. Eur Heart J 31:1220–1229

    Article  PubMed  Google Scholar 

  36. Vincentz JW, Barnes RM, Firulli BA, Conway SJ, Firulli AB (2008) Cooperative interaction of NKX2.5 and Mef2c transcription factors during heart development. Dev Dyn 237:3809–3819

    Article  PubMed  CAS  Google Scholar 

  37. Zhang MQ (2007) Computational analyses of eukaryotic promoters. BMC Bioinform 8(Suppl 6):S3

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 81070173) and the Shandong Provincial Natural Science Foundation (ZR2010HL030 and ZR2010HM111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yan.

Additional information

Shuchao Pang, Jiping Shan, and Yanli Qiao have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pang, S., Shan, J., Qiao, Y. et al. Genetic and Functional Analysis of the NKX2-5 Gene Promoter in Patients With Ventricular Septal Defects. Pediatr Cardiol 33, 1355–1361 (2012). https://doi.org/10.1007/s00246-012-0346-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00246-012-0346-0

Keywords

Navigation