Skip to main content
Log in

Abundance and Bioactivity of Cultured Sponge-Associated Bacteria from the Mediterranean Sea

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this study, the search for new antibiotics was combined with quantitative ecological studies. The cultured fraction of the associated bacterial communities from ten different Mediterranean sponge species was investigated. To obtain quantitative and qualitative data of sponge-associated bacterial communities and to expand the cultured diversity, different media were used. The largest morphological diversity and highest yield of isolates was obtained by using oligotrophic media, which consisted of natural habitat seawater amended with (1% additional carbon sources. The dominant bacterial morphotypes were determined and bacterial isolates were tested for antimicrobial activity and identified using 16S rDNA sequencing. The sponge-associated most abundant morphotypes were all affiliated to the Alphaproteobacteria and showed antimicrobial activity against at least one of the tested strains. In contrast, the ambient seawater was dominated by Gammaproteobacteria. One single alphaproteobacterium, which was related to Pseudovibrio denitrificans, was shown to dominate the cultured community of at least six of the sponges. This designated MBIC3368-like alphaproteobacterium has been isolated from sponges before and seems to be restricted to associations with members of the phylum Porifera. It displays a weak and unstable antimicrobial activity, which gets easily lost during cultivation. However, this bioactive bacterium was present in the sponges by up to 106 cells per gram wet-weight sponge tissue and dominated the cultured fraction with up to 74%. The association of this alphaproteobacterium with sponges is probably evolutionary young and facultative and possibly involves biologically active secondary metabolites. Besides a demonstrated vertical transfer, additional horizontal transfer between the sponges is assumed. Members of the genus Bacillus displaying antimicrobial activity were found regularly, too. However, actinomycetes, which are known for their production of bioactive substances, were present in very low abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Agogue, H, Casamayor, EO, Bourrain, M, Obernosterer, I, Joux, F, Herndl, GJ, Lebaron, P (2005) A survey on bacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMS Microbiol Ecol 54: 269–280

    Article  PubMed  CAS  Google Scholar 

  2. Ahn, YB, Rhee, SK, Fennell, DE, Kerkhof, LJ, Hentschel, U, Haggblom, MM (2003) Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba. Appl Environ Microbiol 69: 4159–4166

    Article  PubMed  CAS  Google Scholar 

  3. Altschul, SF, Gish, W, Miller, W, Myers, EW, Lipman, DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    PubMed  CAS  Google Scholar 

  4. Amann, RI, Ludwig, W, Schleifer, KH (1995) Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    PubMed  CAS  Google Scholar 

  5. Baxter, M, Sieburth, JM (1984) Metabolic and ultrastructural response to glucose of 2 eurytrophic bacteria isolated from seawater at different enriching concentrations. Appl Environ Microbiol 47: 31–38

    PubMed  CAS  Google Scholar 

  6. Bewley, CA, Holland, ND, Faulkner, DJ (1996) Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52: 716–722

    Google Scholar 

  7. Bottone, EJ, Peluso, RW (2003) Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species: preliminary report. J Med Microbiol 52: 69–74

    Article  PubMed  CAS  Google Scholar 

  8. Bultel-Ponce, V, Debitus, C, Berge, JP, Cerceau, C, Guyot, M (1998) Metabolites from the sponge-associated bacterium Micrococcus luteus. J Mar Biotechnol 6: 233–236

    PubMed  Google Scholar 

  9. Enticknap, JJ, Kelly, M, Peraud, O, Hill, RT (2006) Characterization of a culturable alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol 72: 3724–3732

    Article  PubMed  CAS  Google Scholar 

  10. Faulkner, DJ (2002) Marine natural products. Nat Prod Rep 19: 1–48

    PubMed  CAS  Google Scholar 

  11. Faulkner, DJ, He, H-Y, Unson, MD, Bewley, CA, Garson, MJ (1993) New metabolites from marine sponges: are symbionts important? Gazz Chim Ital 123: 301–307

    CAS  Google Scholar 

  12. Faulkner, DJ, Harper, MK, Haygood, MG, Salomon, CE, Schmidt, EW (2000) In: Fusetani, N (Ed.) Symbiotic Bacteria in Sponges: Sources of Bioactive Substances. Drugs from the Sea, Karger, Basel, pp 107–119

  13. Felsenstein, J (1981) Evolutionary trees from DNA-sequences—a maximum-likelihood approach. J Mol Evol 17: 368–376

    Article  PubMed  CAS  Google Scholar 

  14. Flowers, AE, Garson, MJ, Webb, RI, Dumdei, EJ, Charan, RD (1998) Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell Tissue Res 292: 597–607

    Article  PubMed  CAS  Google Scholar 

  15. Friedrich, AB, Merkert, H, Fendert, T, Hacker, J, Proksch, P, Hentschel, U (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in-situ hybridization (FISH). Mar Biol 134: 461–470

    Article  Google Scholar 

  16. Guindon, S, Gascuel, O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704

    Article  PubMed  Google Scholar 

  17. Hathout, Y, Ho, YP, Ryzhov, V, Demirev, P, Fenselau, C (2000) Kurstakins: a new class of lipopeptides isolated from Bacillus thuringiensis. J Nat Prod 63: 1492–1496

    Article  PubMed  CAS  Google Scholar 

  18. Head, IM, Saunders, JR, Pickup, RW (1998) Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35: 1–21

    Article  PubMed  CAS  Google Scholar 

  19. Hentschel, U, Schmid, M, Wagner, M, Fieseler, L, Gernert, C, Hacker, J (2001) Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiol Ecol 35: 305–312

    Article  PubMed  CAS  Google Scholar 

  20. Hentschel, U, Usher, KM, Taylor, MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55: 167–177

    Article  PubMed  CAS  Google Scholar 

  21. Imhoff, JF, Stöhr, R (2003) Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. In: Müller, WEG (Ed.) Sponges (Porifera), Springer, Berlin Heidelberg New York, pp 35–56

    Google Scholar 

  22. Kuznetsov, SI, Dubinina, GA, Lapteva, NA (1979) Biology of oligotrophic bacteria. Annu Rev Microbiol 33: 377–387

    Article  PubMed  CAS  Google Scholar 

  23. Lafi, F, Garson, M, Fuerst, J (2005) Culturable bacterial symbionts isolated from two distinct sponge species (Pseudoceratina clavata and Rhabdastrella globostellata) from the great barrier reef display similar phylogenetic diversity. Microb Ecol 50: 213–220

    Article  PubMed  CAS  Google Scholar 

  24. Lane, DL (1991) 16S/23S rRNA sequencing. In: Stackebrandt, E, Goodfellow, M (Eds.) Nucleic Acid Techniques in Bacterial Systematics, Wiley, New York, pp. 115–175

    Google Scholar 

  25. Lang, S, Beil, W, Tokuda, H, Wicke, C, Lurtz, V (2004) Improved production of bioactive glucosylmannosyl-glycerolipid by sponge-associated Microbacterium species. Mar Biotechnol 6: 152–156

    PubMed  CAS  Google Scholar 

  26. Ludwig, W, Strunk, O, Westram, R, Richter, L, Meier, H, Yadhukumar, Buchner, A, Lai, T, Steppi, S, Jobb, G, Forster, W, Brettske, I, Gerber, S, Ginhart, AW, Gross, O, Grumann, S, Hermann, S, Jost, R, Konig, A, Liss, T, Lussmann, R, May, M, Nonhoff, B, Reichel, B, Strehlow, R, Stamatakis, A, Stuckmann, N, Vilbig, A, Lenke, M, Ludwig, T, Bode, A, Schleifer, KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32: 1363-1371

    Article  PubMed  CAS  Google Scholar 

  27. Marahiel, MA, Nakano, MM, Zuber, P (1993) Regulation of peptide antibiotic production in bacillus. Mol Microbiol 7: 631–636

    Article  PubMed  CAS  Google Scholar 

  28. Mitova, M, Tommonaro, G, Hentschel, U, Müller, WEG, De Rosa, S (2004) Exocellular cyclic dipeptides from a Ruegeria strain associated with cell cultures of Suberites domuncula. Mar Biotechnol 6: 95–103

    Article  PubMed  CAS  Google Scholar 

  29. Müller, WEG, Grebenjuk, VA, Thakur, NL, Thakur, AN, Batel, R, Krasko, A, Muller, IM, Breter, HJ (2004) Oxygen-controlled bacterial growth in the sponge Suberites domuncula: toward a molecular understanding of the symbiotic relationships between sponge and bacteria. Appl Environ Microbiol 70: 2332-2341

    Article  PubMed  Google Scholar 

  30. Muyzer, G, Dewaal, EC, Uitterlinden, AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S ribosomal RNA. Appl Environ Microbiol 59: 695–700

    PubMed  CAS  Google Scholar 

  31. Oclarit, JM, Okada, H, Ohta, S, Kaminura, K, Yamaoka, Y, Iizuka, T, Miyashiro, S, Ikegami, S (1994) Anti-bacillus substance in the marine sponge, Hyatella species produced by an associated Vibrio species bacterium. Microbios 78: 7-16

    PubMed  CAS  Google Scholar 

  32. Oclarit, JM, Shinji, O, Kazuo, K, Yukiho, Y, Susumu, I (1994) Production of an antibacterial agent, o-aminophenol, by a bacterium isolated from the marine sponge, Adocia sp. Fish Sci 60: 559

    CAS  Google Scholar 

  33. Olson, JB, Lord, CC, McCarthy, PJ (2000) Improved recoverability of microbial colonies from marine sponge samples. Microb Ecol 40: 139–147

    PubMed  Google Scholar 

  34. Osinga, R, Tramper, J, Wijffels, RH (1999) Cultivation of marine sponges. Mar Biotechnol 1: 509–532

    Article  PubMed  CAS  Google Scholar 

  35. Pabel, CT, Vater, J, Wilde, C, Franke, P, Hofemeister, J, Adler, B, Bringmann, G, Hacker, J, Hentschel, U (2003) Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol 5: 424–434

    Google Scholar 

  36. Pimentel-Elardo, S, Wehrl, M, Friedrich, AB, Jensen, PR, Hentschel, U (2003) Isolation of planctomycetes from Aplysina sponges. Aquat Microb Ecol 33: 239–245

    Article  Google Scholar 

  37. Pospisil, S, Benada, O, Kofronova, O, Petricek, M, Janda, L, Havlicek, V (1998) Kytococcus sedentarius (formerly Micrococcus sedentarius) and Dermacoccus nishinomiyaensis (formerly Micrococcus nishinomiyaensis) produce monensins, typical Streptomyces cinnamonensis metabolites. Can J Microbiol 44: 1007–1011

    Article  PubMed  CAS  Google Scholar 

  38. Postgate, JR, Hunter, JR (1963) Acceleration of bacterial death by growth substrates. Nature 198: 273

    Article  PubMed  CAS  Google Scholar 

  39. Postma, E, Verduyn, C, Kuiper, A, Scheffers, WA, Vandijken, JP (1990) Substrate-accelerated death of Saccharomyces cerevisiae Cbs-8066 under maltose stress. Yeast 6: 149–158

    Article  PubMed  CAS  Google Scholar 

  40. Proksch, P, Edrada, RA, Ebel, R (2002) Drugs from the seas—current status and microbiological implications. Appl Microbiol Biotechnol 59: 125–134

    Article  PubMed  CAS  Google Scholar 

  41. Schmidt, EW, Obraztsova, AY, Davidson, SK, Faulkner, DJ, Haygood, MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel Deltaproteobacterium, “Candidatus Entotheonella palauensis.” Mar Biol 136: 969–977

    Article  CAS  Google Scholar 

  42. Schut, F, Prins, RA, Gottschal, JC (1997) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat Microb Ecol 12: 177–202

    Article  Google Scholar 

  43. Shigemori, H, Bae, MA, Yazawa, K, Sasaki, T, Kobayashi, J (1992) Alteramide-a, a new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai. J Org Chem 57: 4317–4320

    Google Scholar 

  44. Sipkema, D, Franssen, MCR, Osinga, R, Tramper, J, Wijffels, RH (2005) Marine sponges as pharmacy. Mar Biotechnol 7: 142–162

    Article  PubMed  CAS  Google Scholar 

  45. Stein, T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56: 845–857

    Article  PubMed  CAS  Google Scholar 

  46. Stierle, AC, Cardellina, JH, Singleton, FL (1988) A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44: 1021

    Article  PubMed  CAS  Google Scholar 

  47. Taylor, MW, Schupp, PJ, Dahllof, I, Kjelleberg, S, Steinberg, PD (2004) Host specificity in marine sponge-associated bacteria, and potential implications for marine microbial diversity. Environ Microbiol 6: 121–130

    Article  PubMed  Google Scholar 

  48. Thakur, NL, Hentschel, U, Krasko, A, Pabel, CT, Anil, AC, Müller, WEG (2003) Antibacterial activity of the sponge suberites domuncula and its primmorphs: potential basis for epibacterial chemical defense. Aquat Microb Ecol 31: 77–83

    Article  Google Scholar 

  49. Thiel, V, Imhoff, JF (2003) Phylogenetic identification of bacteria with antimicrobial activities isolated from Mediterranean sponges. Biomol Eng 20: 421–423

    Article  PubMed  CAS  Google Scholar 

  50. Thiel, V, Neulinger, SC, Staufenberger, T, Schmaljohann, R, Imhoff, JF (2007) Spatial distribution of sponge-associated bacteria in the marine sponge Tethya aurantium. FEMS Microbiol Ecol 59: 47–63

    Article  PubMed  CAS  Google Scholar 

  51. Thiel, V, Leininger, S, Brümmer, F, Imhoff, JF (2007) Sponge-specific bacterial association in the Mediterranean sponge Chondrilla nucula. Microb Ecol (in press) doi: 10.1007/s00248-006-9177-y

  52. Thoms, C, Horn, M, Wagner, M, Hentschel, U, Proksch, P (2003) Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar Biol 142: 685-692

    CAS  Google Scholar 

  53. Unson, MD, Holland, ND, Faulkner, DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar Biol 119: 1-11

    Article  CAS  Google Scholar 

  54. Vacelet, J, Donadey, C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30: 301–314

    Article  Google Scholar 

  55. Webster, NS, Hill, RT (2001) The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an alphaproteobacterium. Mar Biol 138: 843–851

    Article  CAS  Google Scholar 

  56. Webster, NS, Wilson, KJ, Blackall, LL, Hill, RT (2001) Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67: 434–444

    Article  PubMed  CAS  Google Scholar 

  57. Wulff, EG, Mguni, CM, Mansfeld-Giese, K, Fels, J, Lubeck, M, Hockenhull, J (2002) Biochemical and molecular characterization of Bacillus amyloliquefaciens, B. subtilis and B. pumilus isolates with distinct antagonistic potential against Xanthomonas campestris pv. campestris. Plant Pathol 51: 574–584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes F. Imhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muscholl-Silberhorn, A., Thiel, V. & Imhoff, J.F. Abundance and Bioactivity of Cultured Sponge-Associated Bacteria from the Mediterranean Sea. Microb Ecol 55, 94–106 (2008). https://doi.org/10.1007/s00248-007-9255-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9255-9

Keywords

Navigation