Skip to main content
Log in

Characterization of the Active Bacterial Community Involved in Natural Attenuation Processes in Arsenic-Rich Creek Sediments

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Acid mine drainage of the Carnoulès mine (France) is characterized by acid waters containing high concentrations of arsenic and iron. In the first 30 m along the Reigous, a small creek draining the site, more than 38% of the dissolved arsenic was removed by co-precipitation with Fe(III), in agreement with previous studies, which suggest a role of microbial activities in the co-precipitation of As(III) and As(V) with Fe(III) and sulfate. To investigate how this particular ecosystem functions, the bacterial community was characterized in water and sediments by 16S rRNA encoding gene library analysis. Based on the results obtained using a metaproteomic approach on sediments combined with high-sensitivity HPLC-chip spectrometry, several GroEL orthologs expressed by the community were characterized, and the active members of the prokaryotic community inhabiting the creek sediments were identified. Many of these bacteria are β-proteobacteria such as Gallionella and Thiomonas, but γ-proteobacteria such as Acidithiobacillus ferrooxidans and α-proteobacteria such as Acidiphilium, Actinobacteria, and Firmicutes were also detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  2. Amaral Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Microbiology: eukaryotic diversity in Spain’s River of Fire. Nature 417:137

    Article  PubMed  CAS  Google Scholar 

  3. Arsène F, Tomoyasu T, Bukau B (2000) The heat shock response of Escherichia coli. Int J Food Microbiol 55:3–9

    Article  PubMed  Google Scholar 

  4. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71:7724–7736

    Article  PubMed  CAS  Google Scholar 

  5. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Article  PubMed  CAS  Google Scholar 

  6. Battaglia-Brunet F, Dictor MC, Garrido F, Crouzet C, Morin D, Dekeyser K, Clarens M, Baranger P (2002) An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667

    Article  PubMed  CAS  Google Scholar 

  7. Bednar AJ, Garbarino JR, Ranville JF, Wildeman TR (2002) Preserving the distribution of inorganic arsenic species in groundwater and acid mine drainage samples. Environ Sci Technol 36:2213–2218

    Article  PubMed  CAS  Google Scholar 

  8. Bertin PN, Médigue C, Normand P (2008) Advances in environmental genomics: towards an integrated view of micro-organisms and ecosystems. Microbiology 154:347–359

    Article  PubMed  CAS  Google Scholar 

  9. Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  PubMed  CAS  Google Scholar 

  10. Bowell RJ (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9:279–286

    Article  CAS  Google Scholar 

  11. Brake SS, Hasiotis ST (2010) Eukaryote-dominated biofilms and their significance in acidic environments. Geomicrobiol J 27:534–558

    Article  Google Scholar 

  12. Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personné JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoules, France. Appl Environ Microbiol 72:551–556

    Article  PubMed  CAS  Google Scholar 

  13. Bruneel O, Pascault N, Egal M, Bancon-Montigny C, Goni-Urriza MS, Elbaz-Poulichet F, Personné JC, Duran R (2008) Archaeal diversity in a Fe-As rich acid mine drainage at Carnoules (France). Extremophiles 12:563–571

    Article  PubMed  CAS  Google Scholar 

  14. Bruneel O, Personné JC, Casiot C, Leblanc M, Elbaz-Poulichet F, Mahler BJ, Le Flèche A, Grimont PA (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 95:492–499

    Article  PubMed  CAS  Google Scholar 

  15. Casiot C, Bruneel O, Personné JC, Leblanc M, Elbaz-Poulichet F (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France). Sci Total Environ 320:259–267

    Article  PubMed  CAS  Google Scholar 

  16. Casiot C, Egal M, Bruneel O, Bancon-Montigny C, Cordier MA, Gomez E, Aliaume C, Elbaz-Poulichet F (2009) Hydrological and geochemical controls on metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous river, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Appl Geochem 24:787–799

    Article  CAS  Google Scholar 

  17. Casiot C, Lebrun S, Morin G, Bruneel O, Personné JC, Elbaz-Poulichet F (2005) Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci Total Environ 347:122–130

    Article  PubMed  CAS  Google Scholar 

  18. Casiot C, Morin G, Juillot F, Bruneel O, Personné JC, Leblanc M, Duquesne K, Bonnefoy V, Elbaz-Poulichet F (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37:2929–2936

    Article  PubMed  CAS  Google Scholar 

  19. Clamp M, Cuff J, Searle SM, Barton GJ (2004) The Jalview Java alignment editor. Bioinformatics 20:426–427

    Article  PubMed  CAS  Google Scholar 

  20. Coupland K, Johnson DB (2008) Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett 279:30–35

    Article  PubMed  CAS  Google Scholar 

  21. Duquesne K, Lebrun S, Casiot C, Bruneel O, Personné JC, Leblanc M, Elbaz-Poulichet F, Morin G, Bonnefoy V (2003) Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Appl Environ Microbiol 69:6165–6173

    Article  PubMed  CAS  Google Scholar 

  22. Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10:228–237

    PubMed  CAS  Google Scholar 

  23. Egal M, Casiot C, Morin G, Elbaz-Poulichet F, Cordier MA, Bruneel O (2010) An updated insight into the natural attenuation of As concentrations 3 in Reigous Creek (southern France). Appl Geochem 25:1949–1957

    Article  CAS  Google Scholar 

  24. Egal M, Casiot C, Morin G, Parmentier M, Bruneel O, Lebrun S, Elbaz-Poulichet F (2009) Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. Chem Geol 265:432–441

    Article  CAS  Google Scholar 

  25. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  PubMed  CAS  Google Scholar 

  26. Felsenstein J (1992) Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method. Genet Res 60:209–220

    Article  PubMed  CAS  Google Scholar 

  27. Ferris FG, Hallberg RO, Lyvén B, Pedersen K (2000) Retention of strontium, cesium, lead and uranium by bacterial iron oxides from a subterranean environment. Appl Geochem 15:1035–1042

    Article  CAS  Google Scholar 

  28. Finneran KT, Johnsen CV, Lovley DR (2003) Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III). Int J Syst Evol Microbiol 53:669–673

    Article  PubMed  CAS  Google Scholar 

  29. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Google Scholar 

  30. Goto K, Mochida K, Kato Y, Asahara M, Fujita R, An SY, Kasai H, Yokota A (2007) Proposal of six species of moderately thermophilic, acidophilic, endospore-forming bacteria: Alicyclobacillus contaminans sp. nov., Alicyclobacillus fastidiosus sp. nov., Alicyclobacillus kakegawensis sp. nov., Alicyclobacillus macrosporangiidus sp. nov., Alicyclobacillus sacchari sp. nov. and Alicyclobacillus shizuokensis sp. nov. Int J Syst Evol Microbiol 57:1276–1285

    Article  PubMed  CAS  Google Scholar 

  31. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62:1435–1491

    PubMed  CAS  Google Scholar 

  32. Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453

    Article  CAS  Google Scholar 

  33. Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in north wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030

    Article  PubMed  CAS  Google Scholar 

  34. He Z, Xiao S, Xie X, Zhong H, Hu Y, Li Q, Gao F, Li G, Liu J, Qiu G (2007) Molecular diversity of microbial community in acid mine drainages of Yunfu sulfide mine. Extremophiles 11:305–314

    Article  PubMed  CAS  Google Scholar 

  35. Heinzel E, Hedrich S, Janneck E, Glombitza F, Seifert J, Schlomann M (2009) Bacterial diversity in a mine water treatment plant. Appl Environ Microbiol 75:858–861

    Article  PubMed  CAS  Google Scholar 

  36. Hippe H (2000) Leptospirillum gen. nov. (ex Markosyan 1972), nom. rev., including Leptospirillum ferrooxidans sp. nov. (ex Markosyan 1972), nom. rev. and Leptospirillum thermoferrooxidans sp. nov. (Golovacheva et al. 1992). Int J Syst Evol Microbiol 50(Pt 2):501–503

    Article  PubMed  Google Scholar 

  37. Jiang CY, Liu Y, Liu YY, You XY, Guo X, Liu SJ (2008) Alicyclobacillus ferrooxydans sp. nov., a ferrous-oxidizing bacterium from solfataric soil. Int J Syst Evol Microbiol 58:2898–2903

    Article  PubMed  CAS  Google Scholar 

  38. Johnson DB (1995) Acidophilic microbial communities: candidates for bioremediation of acidic mine effluents. Int Biodeterior Biodegrad 35:41–58

    Article  CAS  Google Scholar 

  39. Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  PubMed  CAS  Google Scholar 

  40. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  PubMed  CAS  Google Scholar 

  41. Katsoyiannis IA, Zouboulis AI (2004) Application of biological processes for the removal of arsenic from groundwaters. Water Res 38:17–26

    Article  PubMed  CAS  Google Scholar 

  42. Kelly DP, Wood AP (2000) Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int J Syst Evol Microbiol 50(Pt 2):547–550

    Article  PubMed  Google Scholar 

  43. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    Article  PubMed  CAS  Google Scholar 

  44. Letunic I, Bork P (2007) Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23:127–128

    Article  PubMed  CAS  Google Scholar 

  45. Lund PA (2009) Multiple chaperonins in bacteria–why so many? FEMS Microbiol Rev 33:785–800

    Article  PubMed  CAS  Google Scholar 

  46. Moreira D, Amils R (1997) Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. Int J Syst Bacteriol 47:522–528

    Article  PubMed  CAS  Google Scholar 

  47. Morin G, Calas G (2006) Arsenic in soils, mine tailings, and former industrial sites. Elements 2:97–101

    Article  CAS  Google Scholar 

  48. Morin G, Juillot F, Casiot C, Bruneel O, Personné JC, Elbaz-Poulichet F, Leblanc M, Ildefonse P, Calas G (2003) Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoules acid mine drainage, France. A XANES, XRD, and SEM study. Environ Sci Technol 37:1705–1712

    Article  PubMed  CAS  Google Scholar 

  49. Ona-Nguema G, Morin G, Juillot F, Calas G, Brown GE (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ Sci Technol 39:9147–9155

    Article  PubMed  CAS  Google Scholar 

  50. Rodier J, Broutin JP, Chambon P, Champsaur H, Rodi L (1996) L’Analyse des Eaux. Dunod, Paris, p 1383

    Google Scholar 

  51. Rowe OF, Johnson DB (2008) Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors. Syst Appl Microbiol 31:68–77

    Article  PubMed  Google Scholar 

  52. Rowe OF, Sanchez-Espana J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771

    Article  PubMed  CAS  Google Scholar 

  53. Sánchez España JS, LópezPamo E, Santofimia Pastor E, Reyes Andrés J, Rubi J (2005) The natural attenuation of two acidic effluents in Tharsis and La Zarza-Perrunal mines (Iberian Pyrite Belt, Huelva, Spain). Environ Geol 49:253–266

    Article  Google Scholar 

  54. Sun B, Cole JR, Tiedje JM (2001) Desulfomonile limimaris sp. nov., an anaerobic dehalogenating bacterium from marine sediments. Int J Syst Evol Microbiol 51:365–371

    PubMed  CAS  Google Scholar 

  55. Thompson JD, Plewniak F, Thierry J, Poch O (2000) DbClustal: rapid and reliable global multiple alignments of protein sequences detected by database searches. Nucleic Acids Res 28:2919–2926

    Article  PubMed  CAS  Google Scholar 

  56. Vandieken V, Mussmann M, Niemann H, Jorgensen BB (2006) Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol 56:1133–1139

    Article  PubMed  CAS  Google Scholar 

  57. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  58. Weiss S, Carapito C, Cleiss J, Koechler S, Turlin E, Coppee J-Y, Heymann M, Kugler V, Stauffert M, Cruveiller S, Médigue C, Van Dorsselaer A, Bertin PN, Arsène-Ploetze F (2009) Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data. Biochimie 91:192–203

    Article  PubMed  CAS  Google Scholar 

  59. Weiss JV, Rentz JA, Plaia T, Neubauer SC, Merrill-Floyd M, Lilburn T, Bradburne C, Megonigal JP, Emerson D (2007) Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J 24:559–570

    Article  CAS  Google Scholar 

  60. Williams TA, Codoner FM, Toft C, Fares MA (2010) Two chaperonin systems in bacterial genomes with distinct ecological roles. Trends Genet 26:47–51

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was financed by the EC2CO program (“Institut National des Sciences de l’Univers,” CNRS), the “Observatoire de Recherche Méditerranéen en Environnement” (OSU-OREME), and by the ANR 07-BLANC-0118 project (“Agence Nationale de la Recherche”). Sébastien Gallien and Aurélie Volant were supported by a grant from the French Ministry of Education and Research. This work was performed in the framework of the “Groupement de recherche: Métabolisme de l’Arsenic chez les Microorganismes” (GDR2909-CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odile Bruneel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 32.2 kb)

Supplementary Table 1

MS/MS identification of the proteins extracted from the Carnoulès microbial community and separated by 2-D PAGE. (XLS 194 kb)

Supplementary Figure 1

2DE metaproteomic map of the main cytosolic proteins expressed by the bacterial community inhabiting the Reigous creek sediments. Spots analyzed with nanoLC-MS/MS are circled and numbered. The size of protein markers (BenchMark™ Protein Ladder, Invitrogen) and the pI gradient are schematized from 10 to 220 kDa on the left and from 4 to 7 at the top, respectively. (PDF 63.6 kb)

Supplementary Figure 2

Phylogenetic tree based on GroEL amino acid sequences. A total number of 530 GroEL bacterial sequences were retrieved from the RefSeq database: these sequences were 500–550 amino acids in length. From these sequences, only one representative of each genus was kept for the comparisons, which involved 259 sequences. These GroEL sequences were aligned using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html) [55]. Accession numbers: see supplementary data. In red: GroEL sequences identified using the metaproteomic approach; in black: GroEL sequences detected in the Uniprot database. (PDF 1.78 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruneel, O., Volant, A., Gallien, S. et al. Characterization of the Active Bacterial Community Involved in Natural Attenuation Processes in Arsenic-Rich Creek Sediments. Microb Ecol 61, 793–810 (2011). https://doi.org/10.1007/s00248-011-9808-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9808-9

Keywords

Navigation