Skip to main content
Log in

Methyl Coenzyme M Reductase A (mcrA) Gene-Based Investigation of Methanogens in the Mudflat Sediments of Yangtze River Estuary, China

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Methanogen populations of an intertidal mudflat in the Yangtze River estuary of China were investigated based on the methyl coenzyme M reductase A (mcrA) gene using 454-pyrosequencing and quantitative real-time polymerase chain reaction (qPCR). Samples were collected at six depths from three locations. In the qPCR analyses, a mean depth-wise change of mcrA gene abundance was observed from (1.23 ± 0.13)×107 to (1.16 ± 0.29)×108 per g dried soil, which was inversely correlated with the depletion of sulfate (R 2 =0.74; α = 0.05) and salinity (R 2 = 0.66; α = 0.05). The copy numbers of mcrA was at least 1 order of magnitude higher than dissimilatory sulfate reductase B (dsrB) genes, likely indicating the importance of methanogenesis at the mudflat. Sequences related to the orders Methanomicrobiales, Methanosarcinales, Methanobacteriales, Methanococcales and the uncultured methanogens; Rice Cluster I (RC-I), Zoige cluster I (ZC-I) and anaerobic methane oxidizing archaeal lineage-1 (ANME-1) were detected. Methanomicrobiales and Methanosarcinales dominated the entire sediment layers, but detectable changes of proportions were observed with depth. The hydrogenotrophic methanogens Methanomicrobiales slightly increased with depth while Methanosarcinales showed the reverse. Chao1 and ACE richness estimators revealed higher diversity of methanogens near the surface (0–10 cm) when compared with the bottom sediments. The near-surface sediments were mainly dominated by the family Methanosarcinaceae (45 %), which has members that can utilize substrates that cannot be used by sulfate-reducing bacteria. Overall, current data indicate that Methanosarcinales and Methanomicrobiales are the most dominant methanogens within the entire depth profile down to 100 cm, with higher abundance and diversity of methanogens in the deeper and upper sediment layers, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jickells T, Rae J (1997) Biogeochemistry of intertidal sediments. Cambridge University Press, Cambridge, pp 1–15

    Book  Google Scholar 

  2. Thornton SF, McManus J (1994) Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: evidence from the tay estuary, scotland. Estuarine Coastal Shelf Sci 38:219–233. doi:10.1006/ecss.1994.1015

    Article  CAS  Google Scholar 

  3. Cook PLM, Butler ECV, Eyre BD (2004) Carbon and nitrogen cycling on intertidal mudflats of a temperate Australian estuary: I. Benthic metabolism Mar Ecol Prog Ser 280:25–38

    Article  CAS  Google Scholar 

  4. Middelburg JJ, Klaver G, Nieuwenhuize J, Vlug T (1995) Carbon and nitrogen cycling in intertidal sediments near doel, scheldt estuary. Hydrobiologia 311:57–69

    Article  CAS  Google Scholar 

  5. Lipschultz F (1981) Methane release from a brackish intertidal salt-marsh embayment of chesapeake Bay, maryland. Estuaries 4:143–145

    Article  CAS  Google Scholar 

  6. Middelburg JJ, Nieuwenhuize J, Iversen N, Høgh N, de Wilde H, Helder W, Seifert R, Christof O (2002) Methane distribution in european tidal estuaries. Biogeochem 59:95–119

    Article  Google Scholar 

  7. Reebwgh WS (1969) Observations of gases in chesapeak bay sediments. Limnol Oceanogr 14:368–375

    Article  Google Scholar 

  8. Wang D, Chen Z, Sun W, Hu B, Xu S (2009) Methane and nitrous oxide concentration and emission flux of yangtze delta plain river net. Science in China (SerB) 52:652–661

    Article  CAS  Google Scholar 

  9. Chen H, Wang D, Chen Z, Wang J, Xu S (2005) The variation of sediments organic carbon content in chongming east tidal flat during scirpus mariqueter growing stage. J Geogr Sci 15:500–508

    Google Scholar 

  10. Nedwell DB, Embley TM, Purdy KJ (2004) Sulphate reduction, methanogenesis and phylogenetics of the sulphate reducing bacterial communities along an estuarine gradient. Aqua Microb Ecol 37:209–217

    Article  Google Scholar 

  11. Senior E, Lindstrom EB, Banat IM, Nedwell DB (1982) Sulfate reduction and methanogenesis in the sediment of a saltmarsh on the east coast of the united kingdom. Appl Environ Microbiol 43:987–996

    PubMed  CAS  Google Scholar 

  12. Waldron PJ, Petsch ST, Martini AM, Nüslein K (2007) Salinity constraints on subsurface archaeal diversity and methanogenesis in sedimentary rock rich in organic matter. Appl Environ Microbiol 73:4171–4179. doi:10.1128/AEM.02810-06

    Article  PubMed  CAS  Google Scholar 

  13. Winfrey MR, Ward DM (1983) Substrates for sulfate reduction and methane production in intertidal sediments. Appl Environ Microbiol 45:193–199

    PubMed  CAS  Google Scholar 

  14. Rs O, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276

    Google Scholar 

  15. Winfrey MR, Zeikus JG (1977) Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments. Appl Environ Microbiol 33:275–281

    PubMed  CAS  Google Scholar 

  16. Kaku N, AtsukoUeki KU, Watanabe K (2005) Methanogenesis as an important terminal electron accepting process in estuarine sediment at the mouth of orikasa river. Microbes Environ 1:41–52

    Article  Google Scholar 

  17. Singh N (2005) Isolation and characterization of methylotrophic methanogens from anoxic marine sediments in skan Bay, alaska: description of methanococcoides alaskense sp. nov., and emended description of methanosarcina baltica. Int J Syst Evol Microbiol 55:2531–2538. doi:10.1099/ijs.0.63886-0

    Article  PubMed  CAS  Google Scholar 

  18. Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, Boetius A, Teske A (2011) Anaerobic oxidation of methane at different temperature regimes in guaymas basin hydrothermal sediments. ISME J 6:1018–1031. doi:10.1038/ismej.2011.164

    Article  PubMed  Google Scholar 

  19. Parkes RJ, Brock F, Banning N, Hornibrook ERC, Roussel EG, Weightman AJ, Fry JC (2012) Changes in methanogenic substrate utilization and communities with depth in a salt-marsh, creek sediment in southern england. Estuar Coast Shelf Sci 96:170–178. doi:10.1016/j.ecss.2011.10.025

    Article  Google Scholar 

  20. Mori K, Iino T, Suzuki KI, Yamaguchi K, Kamagata Y (2012) Aceticlastic and NaCl-requiring methanogen "methanosaeta pelagica" sp. nov., isolated from marine tidal flat sediment. Appl Environ Microbiol 78:3416–3423. doi:10.1128/aem.07484-11

    Article  PubMed  CAS  Google Scholar 

  21. King GM, Klug MJ, Lovley DR (1983) Metabolism of acetate, methanol, and methylated amines in intertidal sediments of lowes cove, maine. Appl Environ Microbiol 45:1848–1853

    PubMed  CAS  Google Scholar 

  22. Friedrich MW (2005) Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing archaea. Method Enzymol 397:428–442. doi:10.1016/S0076-6879(05)97026-2

    Article  CAS  Google Scholar 

  23. Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiol 148:3521–3530

    CAS  Google Scholar 

  24. Antony CP, Colin Murrell J, Shouche YS (2012) Molecular diversity of methanogens and identification of methanolobus sp. As active methylotrophic archaea in lonar crater lake sediments. FEMS Microbiol Ecol 81:43–51. doi:doi:10.1111/j.1574-6941.2011.01274.x

    Article  PubMed  CAS  Google Scholar 

  25. Lueders T, Chin K-J, Conrad R, Friedrich M (2001) Molecular analyses of methyl-coenzyme M reductase a-subunit (mcrA) genes in rice field soil and enrichment cultures reveal the methanogenic phenotype of a novel archaeal lineage. Environ Microbiol 3:194–204

    Article  PubMed  CAS  Google Scholar 

  26. Zhang T, Ye L, Hin A, Tong Y, Shao M-F, Lok S (2011) Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors. Appl Microbiol Biotechnol 91:1215–1225. doi:10.1007/s00253-011-3408-y

    Article  PubMed  CAS  Google Scholar 

  27. Luke C, Frenzel P (2011) Potential of pmoA amplicon pyrosequencing for methanotroph diversity studies. Appl Environ Microbiol 77:6305–6309. doi:10.1128/AEM.05355-11

    Article  PubMed  Google Scholar 

  28. Oakley BB, Carbonero F, Dowd SE, Hawkins RJ, Purdy KJ (2012) Contrasting patterns of niche partitioning between two anaerobic terminal oxidizers of organic matter. ISME J 6:905–914. doi:10.1038/ismej.2011.165

    Article  PubMed  CAS  Google Scholar 

  29. Zhang H (2011) Using pyrosequencing and quantitative PCR to analyze microbial communities. Front Environ Sci Eng 5:21–27. doi:10.1007/s11783-011-0303-9

    Article  Google Scholar 

  30. Berry D, Ben Mahfoudh K, Wagner M, Loy A (2011) Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol 77:7846–7849. doi:10.1128/AEM.05220-11

    Article  PubMed  CAS  Google Scholar 

  31. Steinberg LM, Regan JM (2009) McrA-targeted real-time quantitative PCR method to examine methanogen communities. Appl Environ Microbiol 75:4435–4442. doi:doi:10.1128/AEM.02858-08

    Article  PubMed  CAS  Google Scholar 

  32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJV, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  PubMed  CAS  Google Scholar 

  33. Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74:6663–6671. doi:10.1128/AEM.00553-08

    Article  PubMed  CAS  Google Scholar 

  34. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235. doi:10.1128/AEM.71.12.8228-8235.2005

    Article  PubMed  CAS  Google Scholar 

  35. Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    PubMed  CAS  Google Scholar 

  36. Castro H, Ogram A, Reddy KR (2004) Phylogenetic characterization of methanogenic assemblages in eutrophic and oligotrophic areas of the florida everglades. Appl Environ Microbiol 70:6559–6568. doi:10.1128/AEM.70.11.6559-6568.2004

    Article  PubMed  CAS  Google Scholar 

  37. Zhang G, Tian J, Jiang N, Guo X, Wang Y, Dong X (2008) Methanogen community in zoige wetland of tibetan plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I. Environ Microbiol 10:1850–1860. doi:10.1111/j.1462-2920.2008.01606.x

    Article  PubMed  CAS  Google Scholar 

  38. Imachi H, Sakai S, Sekiguchi Y, Hanada S, Kamagata Y, Ohashi A, Harada H (2008) Methanolinea tarda gen. nov., a methane producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 59:294–301. doi:10.1099/ijs.0.65394-0

    Article  Google Scholar 

  39. Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov. sp. nov. (“Methanothrix concilii”) and methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40:79–82. doi:10.1099/00207713-40-1-79

    Article  Google Scholar 

  40. Colwell FS, Boyd S, Delwiche ME, Reed DW, Phelps TJ, Newby DT (2008) Estimates of biogenic methane production rates in deep marine sediments at hydrate ridge, cascadia margin. Appl Environ Microbiol 74:3444–3452. doi:10.1128/AEM.02114-07

    Article  PubMed  CAS  Google Scholar 

  41. Jiang L, Zheng Y, Chen J, Xiao X, Wang F (2011) Stratification of archaeal communities in shallow sediments of the pearl river estuary, southern china. Antonie van Leeuwenhoek 99:739–751. doi:10.1007/s10482-011-9548-3

    Article  PubMed  CAS  Google Scholar 

  42. Kurr M, Huber R, Kionig H, Jannasch HW, Fricke H, Trineone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. And sp. nov. Represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol 156:239–247. doi:doi:030289339100125J

    Article  CAS  Google Scholar 

  43. Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sedimentst. Appl Environ Microbiol 43:1373–1379. doi:0099-2240/82/061373-07$02.00/0

    PubMed  CAS  Google Scholar 

  44. Schink B, Zeikus JG (1982) Microbial ecology of pectin decomposition in anoxic lake sediments. J Gen Microbiol 128:393–404

    CAS  Google Scholar 

  45. Kiene RP, Oremland RS, Catena A, Laurence MG, Capone DG (1986) Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl Environ Microbiol 52:1037–1045. doi:0099-2240/86/111037-09$02.00/0

    PubMed  CAS  Google Scholar 

  46. Schink B, Zeikus JG (1980) Microbial methanol formation: a major end product of pectin metabolism. Curr Microbiol 4:387–389

    Article  CAS  Google Scholar 

  47. Summons RE, Franzmann PD, Nichols PD (1998) Carbon isotopic fractionation associated with methylotrophic methanogenesis. Org Geochem 28:465–475

    Article  CAS  Google Scholar 

  48. Leloup J, Petit F, Boust D, Deloffre J, Bally G, Clarisse O, Quillet L (2005) Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the seine estuary (france). Microb Ecol 50:307–314. doi:10.1007/s00248-004-0034-6

    Article  PubMed  CAS  Google Scholar 

  49. Wilms R, Sass H, Kӧpke B, Jr K, Cypionka H, Engelen B (2006) Specific bacterial, archaeal, and eukaryotic communitiesin tidal-flat sediments along a vertical profile of several meters. Appl Environ Microbiol 72:2756–2764. doi:10.1128/AEM.72.4.2756-2764.2006

    Article  PubMed  CAS  Google Scholar 

  50. Wellsbury P, Parkes RJ (1995) Acetate bioavailability and turnover in an estuarine sediment. FEMS Microbiol Ecol 17:85–94

    Article  CAS  Google Scholar 

  51. Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in methanothrix soehngenii and methanosarcina spp. FEMS Microbiol Rev 88:181–198

    Article  CAS  Google Scholar 

  52. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205. doi:10.1016/j.mimet.2005.11.002

    Article  PubMed  CAS  Google Scholar 

  53. Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB (2007) Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, black Sea. Environ Microbiol 9:131–142. doi:10.1111/j.1462-2920.2006.01122.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was partly supported by the National Natural Science Foundation of China (31070097 and 30930019), National Key Technology R&D Program of China (2010BAK69B14) and Major Program of Science and Technology Department of Shanghai (10DZ1200700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe-Xue Quan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 603 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeleke, J., Lu, SL., Wang, JG. et al. Methyl Coenzyme M Reductase A (mcrA) Gene-Based Investigation of Methanogens in the Mudflat Sediments of Yangtze River Estuary, China. Microb Ecol 66, 257–267 (2013). https://doi.org/10.1007/s00248-012-0155-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0155-2

Keywords

Navigation