Skip to main content

Advertisement

Log in

Shifts in Soil Testate Amoeba Communities Associated with Forest Diversification

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We studied changes of testate amoeba communities associated with the conversion of spruce monocultures into mixed beech-fir-spruce forests in the Southern Black Forest Mountains (Germany). In this region, forest conversion is characterized by a gradual development of beech undergrowth within thinned spruce tree stands leading to multiple age continuous cover forests with a diversified litter layer. Strong shifts in the abundance of testate amoeba observed in intermediate stages levelled off to monoculture conditions again after the final stage of the conversion process had been reached. The average number of species per conversion stage (i.e., local richness) did not respond strongly to forest conversion, but the total number of species (i.e., regional richness) was considerably higher in the initial stage than in the mixed forests, due to the large number of hygrophilous species inhabiting spruce monocultures. Functional diversity of the testate amoeba community, however, significantly increased during the conversion process. This shift was closely associated with improved C and N availability as well as higher niche diversity in the continuous cover stands. Lower soil acidity in these forests coincided with a higher relative abundance of eurytopic species. Our results suggest that testate amoeba communities are much more affected by physicochemical properties of the soil than directly by litter diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ellenberg H, Mayer R, Schauermann J (1986) Ökosystem Forschung – Ergebnisse des Sollingprojekts. Ulmer Verlag, Stuttgart

    Google Scholar 

  2. Kazda M, Pichler M (1998) Priority assessment for conversion of Norway spruce forests through introduction of broadleaf species. Forest Ecol Manag 102:245–258. doi:10.1016/S0378-1127(97)00166-7

    Article  Google Scholar 

  3. Knoke T, Stimm B, Ammer C, Moog M (2005) Mixed forests reconsidered: a forest economics contribution on an ecological concept. Forest Ecol Manag 213:102–116. doi:10.1016/j.foreco.2005.03.043

    Article  Google Scholar 

  4. Knoke T, Seifert T (2008) Integrating selected ecological effects of mixed European beech–Norway spruce stands in bioeconomic modeling. Ecol Model 210:487–498. doi:10.1016/j.ecolmodel.2007.08.011

    Article  Google Scholar 

  5. Felton A, Lindbladh M, Brunet J, Fritz Ö (2010) Replacing coniferous monocultures with mixed-species production stands: an assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecol Manag 260:939–947. doi:10.1016/j.foreco.2010.06.011

    Article  Google Scholar 

  6. Salamon JA, Zaitsev A, Gaertner S, Wolters W (2008) Soil macrofaunal response to forest conversion from pure coniferous stands into semi-natural montane forests. Appl Soil Ecol 40:491–498. doi:10.1016/j.apsoil.2008.07.004

    Article  Google Scholar 

  7. Salamon JA, Wolters W (2009) Nematoda response to forest conversion. Eur J Soil Biol 45:184–191. doi:10.1016/j.ejsobi.2008.09.014

    Article  Google Scholar 

  8. Chauvat M, Titsch D, Zaytsev AS, Wolters V (2011) Changes in soil faunal assemblages during conversion from pure to mixed forest stands. Forest Ecol Manag 262:317–324. doi:10.1016/j.foreco.2011.03.037

    Article  Google Scholar 

  9. Zaitsev AS, Chauvat M, Wolters V (2014) Spruce forest conversion to a mixed beech-coniferous stand modifies oribatid community structure. Appl Soil Ecol 76:60–67. doi:10.1016/j.apsoil.2013.12.009

    Article  Google Scholar 

  10. Schönborn W (1973) Humusform und Testaceen – Besatz. Pedobiologia 13:353–360

    Google Scholar 

  11. Meisterfeld R (1986) The importance of protozoa in a beech forest ecosystem. Adv Protozool Res 33:291–299

    Google Scholar 

  12. Foissner W, Adam H (1991) Die Gemeinschaftstruktur und Produktion der terricolen Testaceen (Protozoa, Rhizopoda) in einigen Boden der Osterreichischen Zentralalpen (Hohe Tauern, Glocknergebiet). Bodenbiologische Untersushungen Hohen Tauern 4:53–78

    Google Scholar 

  13. Wanner M (1991) Zur Ökologie von Thekamoeben (Protozoa: Rhizopoda) in süddeutchen Wäldern. Arkh Protistenkd 140:237–288

    Article  Google Scholar 

  14. Clarholm M (2002) Bacteria and protozoa as integral components of the forest ecosystem—their role in creating a naturally varied soil fertility. Antonie van Leeuwenhoek J Microbiol 81:309–318. doi:10.1023/A:1020543424098

    Article  CAS  PubMed  Google Scholar 

  15. Schröter D, Wolters V, De Ruiter PC (2003) C and N mineralisation in the decomposer food webs of a European forest transect. Oikos 102:294–308. doi:10.1034/j.1600-0579.2003.12064.x

    Article  Google Scholar 

  16. Foissner W (1987) Soil Protozoa: fundamental problems, ecological significance, adaptations in ciliates and testaceans, bioindicators and guide to the literature. Progr Protistol 2:69–212

    Google Scholar 

  17. Coûteaux MM (1976) Dynamisme de l'équilibre des Thécamoebiens dans quelques sols climatiques. Memories Du Museum National D'histoire Naturelle, Serie A, Zoologie T.XCVI. Museum national d’histoire naturelle, Paris

  18. Lousier JD, Parkinson D (1984) Annual population dynamics and production ecology of testacea (Protozoa, Rhizopoda) in an aspen woodland soil. Soil Biol Biochem 16:103–114. doi:10.1016/0038-0717(84)90099-3

    Article  Google Scholar 

  19. Tsyganov AN, Milbau A, Beyens L (2013) Environmental factors influencing soil testate amoebae in herbaceous and shrubby vegetation along an altitudinal gradient in subarctic tundra (Abisko, Sweden). Eur J Protistol 49:238–248. doi:10.1016/j.ejop.2012.08.004

    Article  PubMed  Google Scholar 

  20. Stout JD, Heal OW (1967) Protozoa. In: Burges N, Raw F (eds) Soil Biology. Academic, London, pp 149–195

    Chapter  Google Scholar 

  21. Wanner M, Dunger W (2002) Primary immigration and succession of soil organisms on reclaimed opencast coal mining areas in eastern Germany. Eur J Soil Biol 39:137–143. doi:10.1016/S1164-5563(02)01135-4

    Article  Google Scholar 

  22. Wanner M, Elmer M, Kazda M, Xylander W (2008) Community assembly of terrestrial testate amoebae: how is the very first beginning characterized? Microb Ecol 56:43–54. doi:10.1007/s00248-007-9322-2

    Article  PubMed  Google Scholar 

  23. Frouz J, Keplin B, Pižl V, Tajovsky K, Stary J, Lukešova A, Novakova A, Balik V, Hanĕl L, Materna J, Düker C, Chalupsky J, Rusek J, Heinkel T (2001) Soil biota and upper soil layer development in two contrasting post-mining chronosequences. Ecol Eng 17:275–284. doi:10.1016/S0925-8574(00)00144-0

    Article  Google Scholar 

  24. Wanner M (2012) Immediate effects of prescribed burning on terrestrial testate amoebae in a continental Calluna heathland. Ecol Eng 42:101–106. doi:10.1016/j.ecoleng.2012.01.015

    Article  Google Scholar 

  25. Gärtner S (2004) Auswirkungen des Waldumbaus auf die Vegetation im Südschwarzwald. Dissertation. Universität Freiburg

  26. Gärtner S, Reif A (2005) The response of ground vegetation to structural change during forest conversion in the southern Black Forest. Eur J For Res 124:221–231. doi:10.1007/s10342-005-0065-7

    Article  Google Scholar 

  27. Bobrov AA (2003) Extraction of testate amoebae from soil. In: Pokarzhevskii AD, Gongalsky KB, Zaitsev AS (eds) Investigation Methods of Structure, Functioning and Diversity of Detrital Food-Webs. Institute of Ecology and Evolution RAS, Moscow, pp 57–61 (in Russian)

    Google Scholar 

  28. Von Rauenbusch K (1987) Biologie und Feinstructur (REM-Untersuchungen) terrestrischer Testaceen in Waldboden (Rhizopoda, Protozoa). Arch Protistenkd 134:191–204. doi:10.1016/S0003-9365(87)80073-8

    Article  Google Scholar 

  29. Gilbert D, Mitchell EAD, Amblard C, Bourdier G, Francez AJ (2003) Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozoologica 42:99–104

    Google Scholar 

  30. Wilkinson DM, Mitchell EAD (2010) Testate amoebae and nutrient cycling with particular reference to soils. Geomicrobiol J 27:520–533. doi:10.1080/01490451003702925

    Article  Google Scholar 

  31. Jassey VEJ, Shimano S, Dupuy C, Toussaint ML, Gilbert D (2012) Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow “fen-bog” gradient using digestive vacuole content and C-13 and N-15 isotopic analyses. Protist 163:451–464. doi:10.1016/j.protis.2011.07.006

    Article  PubMed  Google Scholar 

  32. Aescht E, Foissner W (1989) Catalogus faunae Austriae. Verlag der Osterreichischen Akademie der. Wissenschaften, Wien

    Google Scholar 

  33. Bobrov AA (2003) On the notion of microrange of soil testaceans. Biology Bull 30:87–94. doi:10.1023/A:1022027913471

    Article  Google Scholar 

  34. Chardez D (1965) Ecologie générale des Thécamoebiens (Rhizopoda, Testacea). Bull l'Institut Agronomique Stations Recherche Gembloux 3:307–341

    Google Scholar 

  35. Charman DJ (1998) The use of testate amoebae in studies of sea-level change: a case study from the Taf Estuary, South Wales, UK. The Holocene 8:209–218. doi:10.1191/095968398676389446

    Article  Google Scholar 

  36. Schönborn W (1964) Bodenbewohnende Testaceen aus Deutschland 1 Untersuchungen im Naturschutzgebiet Serrahn (Mecklenburg). Limnologica 2:105–122

    Google Scholar 

  37. Schönborn W (1964) Bodenbewohnende Testaceen aus Deutschland II Untersuchungen in der Umgebung des Grossen Stechlinsees (Branderburg). Limnologica 2:315–328

    Google Scholar 

  38. StatSoft Inc (2011) Statistica for Windows Version 10.0. Tulsa, USA

  39. Foissner W (2008) Protist diversity and distribution: some basic considerations. Biodivers Conserv 17:235–242. doi:10.1007/s10531-007-9248-5

    Article  Google Scholar 

  40. Krashevska V, Maraun M, Scheu S (2012) How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests? FEMS Microbiol Ecol 80:603–607. doi:10.1111/j.1574-6941

    Article  CAS  PubMed  Google Scholar 

  41. Lousier JD (1982) Colonization of decomposing deciduous leaf litter by Testacea (Protozoa, Rhizopoda)—species succession, abundance, and biomass. Oecologia 52:381–388. doi:10.1007/BF00367963

    Article  Google Scholar 

  42. Schönborn W, Foissner W, Meisterfeld R (1983) Licht- und rasterelektronenmikroskopische Untersuchungen zur Schalenmorphologie und Rassenbildung bodenbewohnender Testaceen (Protozoa: Rhizopoda) sowie Vorschlage zur biometrischen Charakterisierung von Testaceen-Schalen. Protistologica 19:553–556

    Google Scholar 

  43. Ehrmann O, Puppe D, Wanner M, Kaczorekc D, Sommer M (2012) Testate amoebae in 31 mature forest ecosystems—densities and micro-distribution in soils. Eur J Protistol 48:161–168. doi:10.1016/j.ejop.2012.01.003

    Article  PubMed  Google Scholar 

  44. Charman DJ, Warner BG (1992) Relationship between testate amoebae (Protozoa: Rhizopoda) and microenvironmental parameters on a forested peatland in northeastern Ontario. Can J Zool 70:2474–2482. doi:10.1139/z92-331

    Article  Google Scholar 

  45. Mitchell EAD (2004) Response of testate amoebae (Protozoa) to N and P fertilization in an Arctic wet sedge tundra. Arct Antarct Alp Res 36:78–83

    Article  Google Scholar 

  46. Mitchell EAD, Gilbert D (2004) Vertical micro-distribution and response to nitrogen deposition of testate amoebae in Sphagnum. J Eukaryot Microbiol 51:480–490. doi:10.1111/j.1550-7408.2004.tb00400.x

    Article  PubMed  Google Scholar 

  47. Mazei YA, Marfina OV, Chernyshov VA (2012) Distribution of soil-inhabiting testate amoebae along a mountain slope (Baikal Lake region, Khamar-Daban ridge, Cherskii peak). Biol Bull 39:800–804. doi:10.1134/S1062359012100032

    Article  Google Scholar 

  48. Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183. doi:10.1016/S0169-5347(02)02496-5

    Article  Google Scholar 

Download references

Acknowledgments

Research was supported by the project „Auswirkungen von Waldumbaumaßnahmen im Südschwarzwald auf die biogene Umwandlung der organischen Bodensubstanz: Struktur, Funktion und Indikatoreignung der Bodenorganismen“ of the program „Forschung für die Umwelt - Zukunftsorientierte Waldwirtschaft - Projektverbund Südlicher Schwarzwald“ (Section B4 No 0339980) funded by the German Federal Ministry of Education and Research (BMBF). We are grateful to Dr. Matthieu Chauvat (University of Rouen, France) for his help in obtaining the samples as well as fruitful discussions during this manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei S. Zaitsev.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 245 kb)

Appendix

Appendix

Table 2 List of species of testate amoebae found in four forest conversion stages and their average density (106 ind m−2 ± SD), Shannon diversity, and evenness and Simpson index at four forest conversion stages (±SD)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrov, A.A., Zaitsev, A.S. & Wolters, V. Shifts in Soil Testate Amoeba Communities Associated with Forest Diversification. Microb Ecol 69, 884–894 (2015). https://doi.org/10.1007/s00248-015-0607-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0607-6

Keywords

Navigation