Skip to main content
Log in

Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Field CB, Chapin FS, Matson PA, Mooney HA (1992) Responses of terrestrial ecosystems to the changing atmosphere: a resource-based approach. Annu Rev Ecol Syst 23:201–235

    Article  Google Scholar 

  2. Weltzin JF, Loik ME, Schwinning S et al (2003) Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 53:941–952

    Article  Google Scholar 

  3. Harpole WS, Potts DL, Suding KN (2007) Ecosystem responses to water and nitrogen amendment in a California grassland. Glob Chang Biol 13:2341–2348

    Article  Google Scholar 

  4. Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  5. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci U S A 106:203–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Canfield DE, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) The evolution and future of Earth’s nitrogen cycle. Science 330:192–196

    Article  CAS  PubMed  Google Scholar 

  7. Manning P, Newington JE, Robson HR et al (2006) Decoupling the direct and indirect effects of nitrogen deposition on ecosystem function. Ecol Lett 9:1015–1024

    Article  PubMed  Google Scholar 

  8. Clark CM, Tilman D (2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451:712–715

    Article  CAS  PubMed  Google Scholar 

  9. Bai Y, Wu J, Clark CM et al (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  10. Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Article  CAS  PubMed  Google Scholar 

  11. Ramirez KS, Craine JM, Fierer N (2012) Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glol Chang Biol 18:1918–1927

    Article  Google Scholar 

  12. Gough L, Osenberg CW, Gross KL, Collins SL (2000) Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89:428–439

    Article  Google Scholar 

  13. Lebauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  14. Stevens CJ, Dise NB, Mountford JO, Gowing DJ (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  CAS  PubMed  Google Scholar 

  15. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319:83–95

    Article  Google Scholar 

  16. Burke IC, Lauenroth WK, Parton WJ (1997) Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology 78:1330–1340

    Article  Google Scholar 

  17. Wang R, Filley TR, Xu Z et al (2014) Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia. Plant Soil 381:323–336

    Article  CAS  Google Scholar 

  18. Dukes JS, Chiariello NR, Cleland EE et al (2005) Responses of grassland production to single and multiple global environmental changes. PLoS Biol 3:1829

    Article  CAS  Google Scholar 

  19. Yang H, Li Y, Wu M, Zhang Z, Li L, Wan S (2011) Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. Glob Chang Biol 17:2936–2944

    Article  Google Scholar 

  20. Bi J, Zhang N, Liang Y, Yang H, Ma K (2012) Interactive effects of water and nitrogen addition on soil microbial communities in a semiarid steppe. J Plant Ecol 5:320–329

    Article  Google Scholar 

  21. Niu S, Yang H, Zhang Z et al (2009) Non-additive effects of water and nitrogen addition on ecosystem carbon exchange in a temperate steppe. Ecosystems 12:915–926

    Article  CAS  Google Scholar 

  22. Phoenix GK, Emmett BA, Britton AJ et al (2012) Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long‐term field experiments. Glol Chang Biol 18:1197–1215

    Article  Google Scholar 

  23. Van den Berg LJ, Vergeer P, Rich TC, Smart SM, Guest D, Ashmore MR (2011) Direct and indirect effects of nitrogen deposition on species composition change in calcareous grasslands. Glob Chang Biol 17:1871–1883

    Article  Google Scholar 

  24. Xu Z, Wan S, Ren H, Han X, Jiang Y (2012) Influences of land use history and short-term nitrogen addition on community structure in temperate grasslands. J Arid Environ 87:103–109

    Article  Google Scholar 

  25. Xu Z, Wan S, Ren H et al (2012) Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PLoS One 7:e39762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nie M, Pendall E, Bell C et al (2013) Positive climate feedbacks of soil microbial communities in a semi‐arid grassland. Ecol Lett 16:234–241

    Article  PubMed  Google Scholar 

  27. Chung H, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Chang Biol 13:980–989

    Article  Google Scholar 

  28. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  29. Zhang X, Wei H, Chen Q et al (2014) The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biol Biochem 72:26–34

    Article  CAS  Google Scholar 

  30. Clark JS, Campbell JH, Grizzle H, Acosta-Martìnez V, Zak JC (2009) Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert. Microbial Ecol 57:248–260

    Article  Google Scholar 

  31. Evans SE, Wallenstein MD (2014) Climate change alters ecological strategies of soil bacteria. Ecol Lett 17:155–164

    Article  PubMed  Google Scholar 

  32. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  33. De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633

    Article  PubMed  Google Scholar 

  34. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages: biotic interactions, ecosystem processes and global change. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  35. Van der Heijden MG, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  36. Van der Heijden MG, Bakker R, Verwaal J et al (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187

    Article  PubMed  Google Scholar 

  37. Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PG, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Anton Leeuw Int J G 81:509–520

    Article  Google Scholar 

  38. Zak DR, Holmes WE, White DC et al (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

  39. Prober SM, Leff JW, Bates ST et al (2015) Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett 18:85–95

    Article  PubMed  Google Scholar 

  40. Kang L, Han X, Zhang Z et al (2007) Grassland ecosystems in China: review of current knowledge and research advancement. Phil Transac Royal Soc London B: Biol Sci 362:997–1008

    Article  Google Scholar 

  41. Xu Z, Wan S, Zhu G, Ren H, Han X (2010) The influence of historical land use and water availability on grassland restoration. Restor Ecol 18:217–225

    Article  CAS  Google Scholar 

  42. Sun Y, Ding Y (2010) A projection of future changes in summer precipitation and monsoon in East Asia. Sci China Ser D 53:284–300

    Article  CAS  Google Scholar 

  43. Zhang Y, Zheng LX, Liu XJ et al (2008) Evidence for organic N deposition and its anthropogenic sources in China. Atmos Environ 42:1035–1041

    Article  CAS  Google Scholar 

  44. Xu Z, Ren H, Cai J et al (2014) Effects of experimentally-enhanced precipitation and nitrogen on resistance, recovery and resilience of a semi-arid grassland after drought. Oecologia 176:1187–1197

    Article  PubMed  Google Scholar 

  45. Xu Z, Ren H, Li MH et al (2015) Environmental changes drive the temporal stability of semi‐arid natural grasslands through altering species asynchrony. J Ecol 103:1308–1316

    Article  Google Scholar 

  46. Chen S, Lin G, Huang J et al (2009) Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe. Glob Chang Biol 15:2450–2461

    Article  Google Scholar 

  47. Vance E, Brookes P, Jenkinson D (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  48. Gershenson A, Bader NE, Cheng W (2009) Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glol Chang Biol 15:176–183

    Article  Google Scholar 

  49. Kiviniemi K, Eriksson O (2002) Size‐related deterioration of semi-natural grassland fragments in Sweden. Divers Distrib 8:21–29

    Article  Google Scholar 

  50. Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  PubMed  PubMed Central  Google Scholar 

  52. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  54. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267

    Article  CAS  Google Scholar 

  55. McDonald D, Price MN, Goodrich J et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Caporaso JG, Bittinger K, Bushman FD et al (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb 72:5069–5072

    Article  CAS  Google Scholar 

  58. Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490

    Article  PubMed  PubMed Central  Google Scholar 

  59. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  60. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    Article  CAS  PubMed  Google Scholar 

  61. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423, 623–56

    Article  Google Scholar 

  62. Oksanen J, Blanchet FG, Kindt R et al (2013) Vegan: community ecology package. R Package Version 2:10

    Google Scholar 

  63. Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Clarke K, Warwick R (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, Plymouth, United Kingdom

    Google Scholar 

  65. Van der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–10

    Article  PubMed  Google Scholar 

  66. Broughton L, Gross K (2000) Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old-field. Oecologia 125:420–427

    Article  Google Scholar 

  67. Li H, Wang XG, Liang C et al (2015) Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests. Sci Rep 5:12234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cleland EE, Harpole WS (2010) Nitrogen enrichment and plant communities. Ann Ny Acad SCI 1195:46–61

    Article  CAS  PubMed  Google Scholar 

  69. Zhang X, Han X (2012) Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland. J Environ Sci-CHINA 24:1483–1491

    Article  CAS  PubMed  Google Scholar 

  70. Guo J, Liu X, Zhang Y et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    Article  CAS  PubMed  Google Scholar 

  71. Lauber CL, Hamady M, Knight R et al (2009) Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl Environ Microb 75:5111–5120

    Article  CAS  Google Scholar 

  72. Zhang X, Liu W, Zhang G, Jiang L, Han X (2015) Mechanisms of soil acidification reducing bacterial diversity. Soil Biol Biochem 81:275–281

    Article  CAS  Google Scholar 

  73. Meier CL, Bowman WD (2008) Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc Natl Acad Sci U S A 105:19780–19785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Allison SD, Lu Y, Weihe C et al (2013) Microbial abundance and composition influence litter decomposition response to environmental change. Ecology 94:714–725

    Article  PubMed  Google Scholar 

  75. Waldrop MP, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon. Ecosystems 9:921–933

    Article  CAS  Google Scholar 

  76. Treseder KK (2008) Nitrogen additions and microbial biomass: a meta‐analysis of ecosystem studies. Ecol Lett 11:1111–1120

    Article  PubMed  Google Scholar 

  77. Wei C, Yu Q, Bai E et al (2013) Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems. Glob Chang Biol 19:3688–3697

    Article  PubMed  Google Scholar 

  78. Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EA (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854

    Article  CAS  PubMed  Google Scholar 

  79. Ramirez KS, Lauber CL, Knight R et al (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91:3463–3470

    Article  PubMed  Google Scholar 

  80. Chu H, Fierer N, Lauber CL et al (2010) Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ Microbiol 12:2998–3006

    Article  CAS  PubMed  Google Scholar 

  81. Li H, Ye DD, Wang XG et al (2014) Bacterial communities in soils under different types of natural forest in Northeast China. Plant Soil 383:203–216

    Article  CAS  Google Scholar 

  82. Austin AT, Yahdjian L, Stark JM et al (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    Article  PubMed  Google Scholar 

  83. Schimel J, Balser TC, Wallenstein M (2007) Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386–1394

    Article  PubMed  Google Scholar 

  84. Butterly C, Bünemann E, McNeill A et al (2009) Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416

    Article  CAS  Google Scholar 

  85. Tiemann LK, Billings SA (2012) Tracking C and N flows through microbial biomass with increased soil moisture variability. Soil Biol Biochem 49:11–22

    Article  CAS  Google Scholar 

  86. Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tiemann LK, Billings SA (2011) Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biol Biochem 43:1837–1847

    Article  CAS  Google Scholar 

  88. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Chang Biol 15:808–824

    Article  Google Scholar 

  89. Dijkstra FA, Augustine DJ, Brewer P, von Fischer JC (2012) Nitrogen cycling and water pulses in semiarid grasslands: are microbial and plant processes temporally asynchronous? Oecologia 170:799–808

    Article  PubMed  Google Scholar 

  90. Jaakkola A (1984) Leaching losses of nitrogen from a clay soil under grass and cereal crops in Finland. Plant Soil 76:59–66

    Article  CAS  Google Scholar 

  91. McCulley RL, Burke IC, Lauenroth WK (2009) Conservation of nitrogen increases with precipitation across a major grassland gradient in the Central Great Plains of North America. Oecologia 159:571–581

    Article  PubMed  Google Scholar 

  92. Aber J, McDowell W, Nadelhoffer K et al (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15010302 and XDB15010103), the State Key Laboratory of Forest and Soil Ecology, Chinese Academy of Sciences (Grant No. LFSE2015-16), and Program of the National Science Foundation of China (41371251 and 31370009). We thank the Duolun Restoration Ecology Research Station, Inner Mongolia, for providing the experimental sites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Jiang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Table S1

Two-way ANOVAs with a split-plot design on the effect of water addition (W) and nitrogen addition (N) on soil properties and plant variables. (DOCX 18 kb)

Table S2

Two-way ANOVAs with a split-plot design on the effect of water addition (W) and nitrogen addition (N) on bacterial alpha-diversities. (DOCX 15 kb)

Figure S1

Non-metric multi-dimensional scaling (NMDS) plots of the bacterial communities based on unweighted UniFrac distances (a) and weighted UniFrac distances (b). (DOCX 82 kb)

Table S3

Adonis analysis of the effect of water addition (W) and nitrogen deposition (N) on the bacterial community composition based on Bray-Curtis dissimilarities and Unifrac distances (permutation = 999). (DOCX 16 kb)

Figure S2

Beta-diversity correlation of aboveground and belowground communities under regular precipitation (a) and increased precipitation (b) conditions. Bacterial community distances were measured by OTU-based Bray-Curtis matrices. Bray-Curtis distances of plant community were computed based on biomass of each grass species. (DOCX 33 kb)

Figure S3

Mean relative abundances of dominant taxonomic group in soils treated with nitrogen and water. Phylum-level classification (a), class-level classification (b), family-level classification (c), order-level classification (d),and genus-level classification (e). (DOCX 176 kb)

Table S4

Spearman’s rank correlations between the relative abundances of the dominant bacterial phyla and the soil/plant variables. The white panels represent the bacterial group whose abundance increased with N gradients, the light gray panels represent the phyla whose abundance remain unchanged under N amendments, and the gray panels generally collects the bacterial phyla whose abundance decreased with N gradients. In general, the relative abundance of bacterial phyla grouped in white panel showed positive correlation with C/N ratio, inorganic N, soil carbon availability index (CAI), and plant biomass, but negatively correlated with soil pH and microbial biomass. In contrast, the gray-panel phyla showed the exact reverse pattern. (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xu, Z., Yang, S. et al. Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation. Microb Ecol 71, 974–989 (2016). https://doi.org/10.1007/s00248-016-0730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0730-z

Keywords

Navigation