Skip to main content

Advertisement

Log in

Co-inoculation of Arbuscular Mycorrhizal Fungi and the Plant Growth-Promoting Rhizobacteria Improve Growth and Photosynthesis in Tobacco Under Drought Stress by Up-Regulating Antioxidant and Mineral Nutrition Metabolism

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Drought stress is a major environmental concern that limits crop growth on a large scale around the world. Significant efforts are required to overcome this issue in order to improve crop production. Therefore, the exciting role of beneficial microorganisms under stress conditions needs to be deeply explored. In this study, the role of two biotic entities, i.e., Arbuscular mycorrhizal fungi (AMF, Glomus versiforme) and plant growth-promoting rhizobacteria (PGPR, Bacillus methylotrophicus) inoculation in drought tolerance of tobacco (Nicotiana tabacum L.), was investigated. The present results showed that drought stress considerably reduced tobacco plant’s growth and their physiological attributes. However, the plants co-inoculated with AMF and PGPR showed higher drought tolerance by bringing up significant improvement in the growth and biomass of tobacco plants. Moreover, the co-inoculation of AMF and PGPR considerably increased chlorophyll a, b, total chlorophylls, carotenoids, photosynthesis, and PSII efficiency by 96.99%, 76.90%, and 67.96% and 56.88%, 53.22%, and 33.43% under drought stress conditions, respectively. Furthermore, it was observed that drought stress enhanced lipid peroxidation and electrolyte leakage. However, the co-inoculation of AMF and PGPR reduced the electrolyte leakage and lipid peroxidation and significantly enhanced the accumulation of phenols and flavonoids by 57.85% and 71.74%. Similarly, the antioxidant enzymatic activity and the plant nutrition status were also considerably improved in co-inoculated plants under drought stress. Additionally, the AMF and PGPR inoculation also enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) concentrations by 67.71% and 54.41% in the shoots of tobacco plants. The current findings depicted that inoculation of AMF and PGPR (alone or in combination) enhanced the growth and mitigated the photosynthetic alteration with the consequent up-regulation of secondary metabolism, osmolyte accumulation, and antioxidant system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Mathur S, Tomar RS, Jajoo A (2019) Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynth Res 139:227–238. https://doi.org/10.1007/s11120-018-0538-4

    Article  CAS  PubMed  Google Scholar 

  2. Chastain DR, Snider JL, Collins GD et al (2014) Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. J Plant Physiol 171:1576–1585

    Article  CAS  PubMed  Google Scholar 

  3. Ahanger MA, Tomar NS, Tittal M et al (2017) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23:731–744. https://doi.org/10.1007/s12298-017-0462-7

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koffler BE, Luschin-Ebengreuth N, Stabentheiner E et al (2014) Compartment specific response of antioxidants to drought stress in Arabidopsis. Plant Sci 227:133–144. https://doi.org/10.1016/j.plantsci.2014.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng L, Han M, Yang LM et al (2018) Changes in the physiological characteristics and baicalin biosynthesis metabolism of Scutellaria baicalensis Georgi under drought stress. Ind Crops Prod 122:473–482

    Article  CAS  Google Scholar 

  6. Ahmad P, Ashraf M, Hakeem KR et al (2014) Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J plant Interact 9:1–9

    Article  CAS  Google Scholar 

  7. Hanin M, Ebel C, Ngom M et al (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang J, Zhang J, Wang M et al (2019) Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. J Soils Sediments 19:2313–2321. https://doi.org/10.1007/s11368-018-02226-x

    Article  CAS  Google Scholar 

  9. Peedin GF Tobacco cultivation. In: Myers ML (ed) Specialty Crops International Labor Organization

  10. Peedin GF (2011) Tobacco cultivation. In: Myers, M.L. (Ed.), Specialty Crops. International Labor Organization

  11. Kist BB (2018) Anuario Brasileiro Do Tabaco. 2018, p. 132

    Article  Google Scholar 

  12. Mohasseli V, Sadeghi S (2019) Exogenously applied sodium nitroprusside improves physiological attributes and essential oil yield of two drought susceptible and resistant specie of Thymus under reduced irrigation. Ind Crops Prod 130:130–136. https://doi.org/10.1016/j.indcrop.2018.12.058

    Article  CAS  Google Scholar 

  13. Sbrana C, Avio L, Giovannetti M (2014) Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 35:1535–1546. https://doi.org/10.1002/elps.201300568

    Article  CAS  PubMed  Google Scholar 

  14. Zeng Y, Guo L-P, Chen B-D et al (2013) Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23:253–265

    Article  CAS  PubMed  Google Scholar 

  15. Shahzad R, Khan AL, Bilal S et al (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:1–10. https://doi.org/10.3389/fpls.2018.00024

    Article  Google Scholar 

  16. Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470

  17. Ahmad H, Hayat S, Ali M et al (2018) The combination of arbuscular mycorrhizal fungi inoculation (Glomus versiforme) and 28-homobrassinolide spraying intervals improves growth by enhancing photosynthesis, nutrient absorption, and antioxidant system in cucumber (Cucumis sativus L.) under sali. Ecol Evol 8:5724–5740. https://doi.org/10.1002/ece3.4112

    Article  PubMed  PubMed Central  Google Scholar 

  18. Begum N, Ahanger MA, Su Y et al (2019) Improved drought tolerance by AMF inoculation in maize (Zea mays) involves physiological and biochemical implications. Plants 8:1–20. https://doi.org/10.3390/plants8120579

    Article  CAS  Google Scholar 

  19. Harrison MJ, van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    Article  CAS  PubMed  Google Scholar 

  20. Suharno S, Sufaati S, Agustini V, Tanjung RHR (2018) Arbuscular mycorrhizal fungi associated with wati (Piper methysticum), a medicinal plant from Merauke Lowland, Papua, Indonesia. Biosaintifika J Biol Biol Educ 10:260–266. https://doi.org/10.15294/biosaintifika.v10i2.14303

    Article  Google Scholar 

  21. Yang Y, Cao Y, Li Z et al (2020) Interactive effects of exogenous melatonin and Rhizophagus intraradices on saline-alkaline stress tolerance in Leymus chinensis. Mycorrhiza. https://doi.org/10.1007/s00572-020-00942-2

    Article  PubMed  Google Scholar 

  22. Begum N, Qin C, Ahanger MA et al (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1–15. https://doi.org/10.3389/fpls.2019.01068

    Article  Google Scholar 

  23. Begum N, Ahanger MA, Zhang L (2020) AMF inoculation and phosphorus supplementation alleviates drought induced growth and photosynthetic decline in Nicotiana tabacum by up-regulating antioxidant metabolism and osmolyte accumulation. Environ Exp Bot 176:104088. https://doi.org/10.1016/j.envexpbot.2020.104088

    Article  CAS  Google Scholar 

  24. Nell M, Wawrosch C, Steinkellner S et al (2010) Root colonization by symbiotic arbuscular mycorrhizal fungi increases sesquiterpenic acid concentrations in Valeriana officinalis L. Planta Med 76:393–398

    Article  CAS  PubMed  Google Scholar 

  25. Gianinazzi S, Gollotte A, Binet MN et al (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530. https://doi.org/10.1007/s00572-010-0333-3

    Article  PubMed  Google Scholar 

  26. Zubek S, Błaszkowski J, Seidler-łozykowska K et al (2013) Arbuscular mycorrhizal fungi abundance, species richness and composition under the monocultures of five medicinal plants. Acta Sci Pol Hortorum Cultus 12:127–141

    Google Scholar 

  27. León Morcillo RJ, Ocampo JA, García Garrido JM (2012) Plant 9-lox oxylipin metabolism in response to arbuscular mycorrhiza. Plant Signal Behav 7:1584–1588

    Article  PubMed  PubMed Central  Google Scholar 

  28. Babenko LM, Shcherbatiuk MM, Skaterna TD, Kosakivska IV (2017) Lipoxygenases and their metabolites in formation of plant stress tolerance. Ukr Biochem J 89:5–21

    PubMed  Google Scholar 

  29. Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18:185–190

  30. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. https://doi.org/10.1016/j.tplants.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  31. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 1–15

  32. Simova-Stoilova L, Demirevska K, Petrova T et al (2008) Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ 54:529–536. https://doi.org/10.17221/427-pse

    Article  CAS  Google Scholar 

  33. Su AY, Niu SQ, Liu YZ et al (2017) Synergistic effects of bacillus amyloliquefaciens (GB03) and water retaining agent on drought tolerance of perennial ryegrass. Int J Mol Sci 18:1–13. https://doi.org/10.3390/ijms18122651

    Article  CAS  Google Scholar 

  34. Gururani MA, Upadhyaya CP, Baskar V et al (2013) Plant growth-promoting rhizobacteria enhance abiotic stress tolerance in Solanum tuberosum through inducing changes in the expression of ROS-scavenging enzymes and improved photosynthetic performance. J Plant Growth Regul 32:245–258. https://doi.org/10.1007/s00344-012-9292-6

    Article  CAS  Google Scholar 

  35. Arshad M, Shaharoona B, MAHMOOD T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Project supported by the Higher Education Commission, Islamabad, Pakistan (No. PIN 041 2. Pedosphere 18:611–620. https://doi.org/10.1016/S1002-0160(08)60055-7

    Article  Google Scholar 

  36. Vílchez JI, García-Fontana C, Román-Naranjo D et al (2016) Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front Microbiol 7:1–11. https://doi.org/10.3389/fmicb.2016.01577

    Article  Google Scholar 

  37. Priyadharsini P, Muthukumar T (2015) Insight into the role of arbuscular mycorrhizal fungi in sustainable agriculture. In: Environmental Sustainability. Springer, New Delhi, 3–37

  38. Kumar A, Sharma S, Mishra S (2016) Evaluating effect of arbuscular mycorrhizal fungal consortia and Azotobacter chroococcum in improving biomass yield of Jatropha curcas. Plant Biosyst 150:1056–1064. https://doi.org/10.1080/11263504.2014.1001001

    Article  Google Scholar 

  39. Ahmad P, Hashem A, Abd-Allah EF et al (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:1–15. https://doi.org/10.3389/fpls.2015.00868

    Article  CAS  Google Scholar 

  40. Vardharajula S, Ali SZ, Grover M et al (2011) Drought-tolerant plant growth promoting bacillus spp.: effect on growth, osmol ytes, and antioxidant status of maize under drought stress. J Plant Interact 6:1–14. https://doi.org/10.1080/17429145.2010.535178

    Article  CAS  Google Scholar 

  41. Cvikrová M, Gemperlová L, Martincová O, Vanková R (2013) Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiol Biochem 73:7–15. https://doi.org/10.1016/j.plaphy.2013.08.005

    Article  CAS  PubMed  Google Scholar 

  42. Bahrami-Rad S, Hajiboland R (2017) Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: comparison of root with foliar application. Ann Agric Sci 62:121–130

  43. Daniel B, Skipper H (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, pp 29–35

  44. Black, CA (1965) Methods of soil analysis: part I physical and mineralogical properties. Am Soc Agron, Madison

  45. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(158):18. https://doi.org/10.1016/s0007-1536(70)80110-3

    Article  Google Scholar 

  46. Road O, Division AP (1990) How To quantify amf colonization on root. New Phytol 115:495–495

    Article  Google Scholar 

  47. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris Plant Physiol 24:1–15

    CAS  PubMed  Google Scholar 

  48. Liu T, Sheng M, Wang CY et al (2015) Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53:250–258. https://doi.org/10.1007/s11099-015-0100-y

    Article  CAS  Google Scholar 

  49. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  50. Fong J, Schaffer FL, Kirk PL (1953) The ultramicrodetermination of glycogen in liver. A comparison of the anthrone and reducing - sugar methods 1 separation of glycogen 45(3):19–326

  51. Sadasivam S, and Manickam A (2004) “Biochemical Methods,” 2nd Edition, New Age International (P) Limited Publishers, New Delhi

  52. Weatherley PE (1949) Studies in the water relations of I. The field measurement of water deficits in leaves. New Phytol 49:81–86

    Article  Google Scholar 

  53. Heath R, Packer L (1968) Photoperoxidation in isolated chloroplasts of fatty acid peroxidation chlorophyll. Arch Biochem biophisics 126:189–198

    Article  Google Scholar 

  54. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9. https://doi.org/10.1016/S0168-9452(98)00025-9

    Article  CAS  Google Scholar 

  55. Singleton VL, Rossi JA, Jr J (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

  56. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559

    Article  CAS  Google Scholar 

  57. Vaganan MM, Ravi I, Nandakumar A et al (2014) Phenylpropanoid enzymes, phenolic polymers and metabolites as chemical defenses to infection of Pratylenchus coffeae in roots of resistant and susceptible bananas (Musa spp). Indian J Exp Biol 52(3):252–260

  58. Doderer A, Kokkelink I, van der Veen S, Valk B, Schram A, Douma A (1992) Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochim Biophys Acta 112:97–104

  59. Dhindsa RS, Plumb-dhindsa P, Thorpe TA (1981) Leaf senescence : correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase content in a trusted digital archive. We use information technology and tools to increase produ. J Exp Bot 32:93–101

    Article  CAS  Google Scholar 

  60. Aebi H (1984) Catalase in vitro. Methods in enzymol, vol 105. Academic Press, Cambridge, pp 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

  61. Nakano Y, Asada K (1981) Hydrogen Peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

    Article  CAS  Google Scholar 

  62. Hori M, Kondo H, Ariyoshi N et al (1997) Changes in the hepatic glutathione peroxidase redox system produced by coplanar polychlorinated biphenyls in Ah-responsive and -less-responsive strains of mice: mechanism and implications for toxicity. Environ Toxicol Pharmacol 3:267–275. https://doi.org/10.1016/S1382-6689(97)00025-2

    Article  CAS  PubMed  Google Scholar 

  63. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82: 70–77

  64. Mukherjee SP, Choudhuri MA (1983) Implications of water stressinduced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiol 58:166–170

  65. Steyermark A (1961) Quantitative organic microanalysis. Academic Press, London, p 665

    Google Scholar 

  66. Olsen SR, Cole CV, Watandbe F, Dean LL (1954) Estimation of available phosphorus in soil by extraction with sodium bi- carbonate. J Chem Inf Model 53(9):1689–1699

    Google Scholar 

  67. Khosravi H, Haydari E, Shekoohizadegan S, Zareie S (2017) Assessment the effect of drought on vegetation in desert area using Landsat data. Egypt J Remote Sens Sp Sci 20:S3–S12. https://doi.org/10.1016/j.ejrs.2016.11.007

    Article  Google Scholar 

  68. Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiol Biochem 115:449–460. https://doi.org/10.1016/j.plaphy.2017.04.017

    Article  CAS  PubMed  Google Scholar 

  69. Rahimzadeh S, Pirzad A (2017) Arbuscular mycorrhizal fungi and Pseudomonas in reduce drought stress damage in flax (Linum usitatissimum L.): a field study. Mycorrhiza 27:537–552. https://doi.org/10.1007/s00572-017-0775-y

    Article  PubMed  Google Scholar 

  70. Ye L, Zhao X, Bao E et al (2019) Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem ii activities and stress-response gene expressions under salinity-alkalinity stresses. Front Plant Sci 10:1–12. https://doi.org/10.3389/fpls.2019.00863

    Article  Google Scholar 

  71. Gamalero E, Martinotti MG, Trotta A et al (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300. https://doi.org/10.1046/j.1469-8137.2002.00460.x

    Article  Google Scholar 

  72. Sheteiwy MS, Ali DFI, Xiong YC et al (2021) Physiological and biochemical responses of soybean plants inoculated with Arbuscular mycorrhizal fungi and Bradyrhizobium under drought stress. BMC Plant Biol 21:1–21. https://doi.org/10.1186/s12870-021-02949-z

    Article  CAS  Google Scholar 

  73. Aalipour H, Nikbakht A, Etemadi N et al (2020) Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Sci Hortic (Amsterdam) 261:108923. https://doi.org/10.1016/j.scienta.2019.108923

    Article  CAS  Google Scholar 

  74. Diagne N, Ndour M, Djighaly PI et al (2020) Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq.). Front Sustain Food Syst 4:1–8. https://doi.org/10.3389/fsufs.2020.601004

    Article  Google Scholar 

  75. Moreira H, Pereira SIA, Vega A et al (2020) Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J Environ Manage 257:109982. https://doi.org/10.1016/j.jenvman.2019.109982

    Article  CAS  PubMed  Google Scholar 

  76. Marulanda A, Barea JM, Azcón R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678. https://doi.org/10.1007/s00248-006-9078-0

    Article  CAS  PubMed  Google Scholar 

  77. del Mar AM, Kohler J, Caravaca F, Roldán A (2009) Differential effects of Pseudomonas mendocina and Glomus intraradices on lettuce plants physiological response and aquaporin PIP2 gene expression under elevated atmospheric CO2 and drought. Microb Ecol 58:942–951. https://doi.org/10.1007/s00248-009-9544-6

    Article  CAS  Google Scholar 

  78. Hashem A, Alqarawi AA, Radhakrishnan R et al (2018) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25:1102–1114. https://doi.org/10.1016/j.sjbs.2018.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kavatagi PK, Lakshman HC (2014) Interaction between AMF and plant growth-promoting rhizobacteria on two varieties of Solanum lycopersicum L. World Appl Sci J 32:2054–2062

    Google Scholar 

  80. Visen A, Bohra M, Singh PN et al (2017) Two pseudomonad strains facilitate AMF mycorrhization of litchi (Litchi chinensis Sonn.) and improving phosphorus uptake. Rhizosphere 3:196–202. https://doi.org/10.1016/j.rhisph.2017.04.006

    Article  Google Scholar 

  81. Nagargade M, Tyagi V, Singh MK (2018) Role of rhizospheric microbes in soil. Role Rhizospheric Microbes Soil. https://doi.org/10.1007/978-981-10-8402-7

    Article  Google Scholar 

  82. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  83. Verma RK, Sachan M, Vishwakarma K, Upadhyay N, Mishra RK, Tripathi DK, Sharma S (2018) Role of PGPR in sustainable agriculture: molecular approach toward disease suppression and growth promotion. In: Role of rhizospheric microbes in soil. Springer, Singapore, pp 259–290

  84. Calvo-Polanco M, Molina S, Zamarreño AM et al (2014) The symbiosis with the arbuscular mycorrhizal fungus rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029. https://doi.org/10.1093/pcp/pcu035

    Article  CAS  PubMed  Google Scholar 

  85. Sato T, Hachiya S, Inamura N et al (2019) Secretion of acid phosphatase from extraradical hyphae of the arbuscular mycorrhizal fungus Rhizophagus clarus is regulated in response to phosphate availability. Mycorrhiza. https://doi.org/10.1007/s00572-019-00923-0

    Article  PubMed  Google Scholar 

  86. Dal Cortivo C, Barion G, Ferrari M et al (2018) Effects of field inoculation with VAM and bacteria consortia on root growth and nutrients uptake in common wheat. Sustain 10(9):32–86. https://doi.org/10.3390/su10093286

  87. Musyoka DM, Njeru EM, Nyamwange MM, Maingi JM (2020) Arbuscular mycorrhizal fungi and Bradyrhizobium co-inoculation enhances nitrogen fixation and growth of green grams (Vigna radiata L.) under water stress. J Plant Nutr 43:1036–1047. https://doi.org/10.1080/01904167.2020.1711940

    Article  CAS  Google Scholar 

  88. Armada E, Azcón R, López-Castillo OM et al (2015) Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiol Biochem 90:64–74. https://doi.org/10.1016/j.plaphy.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  89. Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447. https://doi.org/10.1093/jxb/eri060

    Article  CAS  PubMed  Google Scholar 

  90. Porcar-Castell A, Tyystjärvi E, Atherton J et al (2014) Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. J Exp Bot 65:4065–4095. https://doi.org/10.1093/jxb/eru191

    Article  CAS  PubMed  Google Scholar 

  91. Dalal VK, Tripathy BC (2012) Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell Environ 35:1685–1703. https://doi.org/10.1111/j.1365-3040.2012.02520.x

    Article  CAS  Google Scholar 

  92. Yooyongwech S, Samphumphuang T, Tisarum R et al (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hortic (Amsterdam) 198:107–117. https://doi.org/10.1016/j.scienta.2015.11.002

    Article  CAS  Google Scholar 

  93. Fang S, Tao Y, Zhang Y et al (2018) Effects of metalaxyl enantiomers stress on root activity and leaf antioxidant enzyme activities in tobacco seedlings. Chirality 30:469–474. https://doi.org/10.1002/chir.22810

    Article  CAS  PubMed  Google Scholar 

  94. He F, Sheng M, Tang M (2017) Effects of rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in robinia pseudoacacia L Under drought stress. Front Plant Sci 8:1–14. https://doi.org/10.3389/fpls.2017.00183

    Article  Google Scholar 

  95. Nankishore A, Farrell AD (2016) The response of contrasting tomato genotypes to combined heat and drought stress. J Plant Physiol 202:75–82

  96. Ahanger MA, Tittal M, Mir RA, Agarwal R (2017) Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma 254:1953–1963. https://doi.org/10.1007/s00709-017-1086-z

    Article  CAS  PubMed  Google Scholar 

  97. Shamsul H, Qaiser H, Mohammed NA, Arif SW, John PAA (2012) Role of proline under changing environments. Plant Signal Behav 7(11):1456–1466. https://doi.org/10.4161/psb.21949

  98. Meena M, Divyanshu K, Kumar S et al (2019) Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon 5:e02952. https://doi.org/10.1016/j.heliyon.2019.e02952

    Article  PubMed  PubMed Central  Google Scholar 

  99. Behrooz A, Vahdati K, Rejali F et al (2019) Arbuscular mycorrhiza and plant growth-promoting bacteria alleviate drought stress in walnut. HortScience 54:1087–1092. https://doi.org/10.21273/HORTSCI13961-19

    Article  CAS  Google Scholar 

  100. Hossain MA, Bhattacharjee S, Armin SM, et al. (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420

  101. Srivastava RKSC (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci

  102. Fouad MO, Essahibi A, Benhiba L, Qaddoury A (2014) Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Span J Agric Res 12:763–771. https://doi.org/10.5424/sjar/2014123-4815

    Article  Google Scholar 

  103. Mirzaee M, Moieni A, Ghanati F (2013) Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. J Agric Sci Technol 15:593–602

    CAS  Google Scholar 

  104. Chandra D, Srivastava R, Gupta VV et al (2019) Evaluation of ACC-deaminase-producing rhizobacteria to alleviate water-stress impacts in wheat (Triticum aestivum L.) plants. Can J Microbiol 65(5). https://doi.org/10.1139/cjm-2018-0636

  105. Hazzoumi Z, Moustakime Y, Elharchli E, Joutei KA (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem Biol Technol Agric 2:10. https://doi.org/10.1186/s40538-015-0035-3

  106. Cervantes-Gámez RG, Bueno-Ibarra MA, Cruz-Mendívil A et al (2016) Arbuscular mycorrhizal symbiosis-induced expression changes in Solanum lycopersicum leaves revealed by RNA-seq analysis. Plant Mol Biol Report 34:89–102

    Article  Google Scholar 

  107. Osakabe Y, Nishikubo N, Osakabe K (2007) Phenylalanine ammonia-lyase in woody plants: a key swich of carbon accumulation in biomass. Jpn J Plant Sci 1:103–108

    Google Scholar 

  108. Da Trindade R, Almeida L, Xavier L et al (2019) Arbuscular mycorrhizal fungi colonization promotes changes in the volatile compounds and enzymatic activity of lipoxygenase and phenylalanine ammonia lyase in Piper nigrum L. ‘Bragantina’. Plants (Basel, Switzerland) 8(11). https://doi.org/10.3390/plants8110442

  109. Zhang Z, Zhang J, Xu G et al (2019) Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New For 50:593–604. https://doi.org/10.1007/s11056-018-9681-1

    Article  Google Scholar 

  110. Liu C, Ravnskov S, Liu F et al (2018) Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J Agric Sci 156:46–58. https://doi.org/10.1017/S0021859618000023

    Article  CAS  Google Scholar 

  111. Meixner C, Ludwig-Müller J, Miersch O et al (2005) Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta 222:709–715. https://doi.org/10.1007/s00425-005-0003-4

    Article  CAS  PubMed  Google Scholar 

  112. Torelli A, Trotta A, Acerbi L et al (2000) IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226:29–35. https://doi.org/10.1023/A:1026430019738

    Article  CAS  Google Scholar 

  113. Shaul-Keinan O, Gadkar V, Ginzberg I et al (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154:501–507. https://doi.org/10.1046/j.1469-8137.2002.00388.x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31871646, 31571691), the National Key R & D Program of China (2018YFD0100800), the MOE Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT_17R55), the Fundamental Research Funds for the Central Universities (KYT201801), and the Jiangsu Collaborative Innovation Center for Modern Crop Production (JCICMCP) Program.

Author information

Authors and Affiliations

Authors

Contributions

Study was designed by TZ and NB. Experiments were performed and analyzed by NB and HA. NB wrote the manuscript. NB, HA, LW, KA, RR, MIK, and TZ technically revised the manuscript. TZ supervised the work.

Corresponding author

Correspondence to Tuanjie Zhao.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Begum, N., Wang, L., Ahmad, H. et al. Co-inoculation of Arbuscular Mycorrhizal Fungi and the Plant Growth-Promoting Rhizobacteria Improve Growth and Photosynthesis in Tobacco Under Drought Stress by Up-Regulating Antioxidant and Mineral Nutrition Metabolism. Microb Ecol 83, 971–988 (2022). https://doi.org/10.1007/s00248-021-01815-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01815-7

Keywords

Navigation