Skip to main content
Log in

Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Elevated levels of nitrogen input into various terrestrial environments in recent decades have led to increases in soil nitrate production and leaching. However, nitrifying potential and nitrifying activity tend to be highly variable over space and time, making broad-scale estimates of nitrate production difficult. This study investigates whether the high spatiotemporal variation in nitrate production might be explained by differences in the structure of ammonia-oxidizing bacterial communities in nitrogen-saturated coniferous forest soils. The diversity of ammonia-oxidizing bacteria of the β-subgroup Proteobacteria was therefore investigated using two different PCR-based approaches. The first targeted the 16S rRNA gene and involved temporal temperature gradient electrophoresis (TTGE) of specifically amplified PCR products, with subsequent band excision and nucleotide sequence determination. The second approach involved the cloning and sequencing of PCR-amplified amoA gene fragments. All recovered 16S rDNA sequences were closely related to the culture strain Nitrosospira sp. AHB1, which was isolated from an acid soil and is affiliated with Nitrosospira cluster 2, a sequence group previously shown to be associated with acid environments. All amoA-like sequences also showed a close affinity with this acid-tolerant Nitrosospira strain, although greater sequence variation could be detected in the amoA analysis. The ammonia-oxidizing bacterial community in the nitrogen-saturated coniferous forest soil was determined to be very stable, showing little variation between different organic layers and throughout the year, despite large differences in the total Bacterial community structure as determined by 16S rDNA DGGE community fingerprinting. These results suggest that environmental heterogeneity affecting ammonia oxidizer numbers and activity, and not ammonia oxidizer community structure, is chiefly responsible for spatial and temporal variation in nitrate production in these acid forest soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander M (1982) Most Probable Number Method for microbial populations. In: Page AL, Miller RHKeeney DR (eds) Methods of Soil Analysis. American Society Agronomy, Madison, WI, pp 815–820

    Google Scholar 

  2. Belser LW, Schmidt EL (1978) Diversity in the ammonia-oxidizing nitrifier population of a soil. Appl Environ Microbiol 36:584–588

    PubMed  CAS  Google Scholar 

  3. Berg MP, Verhoef HA, Bolger T, Anderson JM, Beese F, Couteaux MM, Ineson P, McCarthy F, Palka L, Raubuch M, Splatt P, Willison T (1997) Effects of air pollutant temperature interactions on mineral-N dynamics and cation leaching in reciprocally forest soil transplantation experiments. Biogeochemistry 39:295–326

    Article  CAS  Google Scholar 

  4. Brosius J, Dull TL, Sleeter DD, Noller HF (1981) Gene organisation and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 48:107–127

    Article  Google Scholar 

  5. Clays-Josserand A, Lensi R, Gourbiere F (1988) Vertical distribution of nitrification potential in an acid forest soil. Soil Biol Biochem 20:405–406

    Article  CAS  Google Scholar 

  6. De Boer W, Gunnewiek PAK, Laanbroek HJ (1995) Ammonium-oxidation at low pH by a chemolithotrophic bacterium belonging to the genus Nitrosospira. Soil Biol Biochem 27:127–132

    Article  Google Scholar 

  7. De Boer W, Kester RA (1996) Variability of nitrification potentials in patches of undergrowth vegetation in primary Scots pine stands. Forest Ecol Manag 86:97–103

    Article  Google Scholar 

  8. De Boer W, Tietema A, Klein Gunnewiek PJA, Laanbroek HJ (1992) The chemolithotrophic ammonium-oxidizing community in a nitrogen-saturated acid forest soil in relation to pH dependent nitrifying activity. Soil Biol Biochem 24:229–234

    Article  Google Scholar 

  9. Faber JH, Verhoef HA (1991) Functional differences between closely related soil arthropods with respect to decomposition and nitrogen mobilization in a pine forest. Soil Biol Biochem 23:15–23

    Article  CAS  Google Scholar 

  10. Hastings RC, Ceccherini MT, Miclaus N, Saunders JR, Bazzicalupo M, McCarthy AJ (1997) Direct molecular biological analysis of ammonia oxidising bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiol Ecol 23:45–54

    Article  CAS  Google Scholar 

  11. Head IM, Hiorns WD, Embley TM, Mccarthy AJ, Saunders JR (1993) The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J Gen Microbiol 139:1147–1153

    PubMed  CAS  Google Scholar 

  12. Kowalchuk GA, Bodelier PLE, Heilig GHJ, Stephen JR, Laanbroek HJ (1998) Community analysis of ammonia-oxidising bacteria, in relation to oxygen availability in soils and root-oxygenated sediments, using PCR, DGGE and oligonucleotide probe hybridisation. FEMS Microbiol Ecol 27:339–350

    Article  CAS  Google Scholar 

  13. Kowalchuk GA, Naoumenko ZS, Derikx PJL, Felske A, Stephen JR, Arkhipchenko IA (1999) Molecular analysis of ammonia-oxidizing bacteria of the β subdivision of the class Proteobacteria in compost and composted materials. Appl Environ Microbiol 65:396–403

    PubMed  CAS  Google Scholar 

  14. Kowalchuk GA, Stephen JR, De Boer W, Prosser JI, Embley TM, Woldendorp JW (1997) Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Microbiol 63:1489–1497

    PubMed  CAS  Google Scholar 

  15. Kowalchuk GA, Stientra AW, Heilig GHJ, Stephen JR, Woldendorp JW (2000) Changes in the community structure of ammonia-oxidising bacteria during secondary succession of calcareous grasslands. Environ Microbiol 2(1):99–110

    Article  PubMed  CAS  Google Scholar 

  16. Laverman AM, Zoomer HR, Van Verseveld HW, Verhoef HA (2000) Temporal and spatial variation of nitrogen transformations in a coniferous forest soil. Soil Biol Biochem 32:1661–1670 (in press)

    Article  CAS  Google Scholar 

  17. Maidak BL, Cole JR, Parker CTJ, Garrity GM, Larsen N, Li B, Lilburn TG, McCaughey MJ, Olsen GJ, Overbeek R, Pramanik S, Schmidt TM, Tiedje JM, Woese CR (1999) A new version of the RDP. Nucleic Acids Res 27:171–173

    Article  PubMed  CAS  Google Scholar 

  18. McCaig AE, Phillips CJ, Stephen JR, Kowalchuk GA, Harvey SM, Herbert RA, Embley TM, Prosser JI (1999) Nitrogen cycling and community structure of proteobacterial β subgroup ammonia-oxidizing bacteria within polluted marine fish farm sediments. Appl Environ Microbiol 65:213–220

    PubMed  CAS  Google Scholar 

  19. Mullins TD, Britschgi TB, Krest RL, Giovannoni SJ (1995) Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Ocean 40:148–158

    Article  CAS  Google Scholar 

  20. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  21. Prosser JI (1989) Autotrophic nitrification in bacteria. Adv Microb Phys 30:125–181

    Article  CAS  Google Scholar 

  22. Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    PubMed  CAS  Google Scholar 

  23. Schmidt EL, Belser LW (1982) Nitrifying bacteria. In: Page AL, Miller RHKeeney DR (eds) Methods of Soil Analysis. American Society Agronomy, Madison, WI, pp 1027–1042

    Google Scholar 

  24. Speksnijder AGCL, Kowalchuk GA, Roest K, Laanbroek HJ (1998) Recovery of a Nitrosomonas-like 16s rDNA sequence group from freshwater habitats. Syst Appl Microbiol 21:321–330

    PubMed  CAS  Google Scholar 

  25. Speksnijder AGCL (2000) Community analysis of β-subgroup ammonia-oxidizing bacteria in aquatic environments: a molecular approach. PhD Thesis, University of Nijmegen

  26. Stephen JR, Chang YJ, Macnaughton SJ, Kowalchuk GA, Leung KT, Flemming CA, White DC (1999) Effect of toxic metals on indigenous soil β-subgroup proteobacterium ammonia oxidizer community structure and protection against toxicity by inoculated metal-resistant bacteria. Appl Environ Microbiol 65:95–101

    PubMed  CAS  Google Scholar 

  27. Stephen JR, Kowalchuk GA, Bruns MAV, McCaig AE, Phillips CJ, Embley TM, Prosser JI (1998) Analysis of β subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl Environ Microbiol 64:2958–2965

    PubMed  CAS  Google Scholar 

  28. Stephen JR, McCaig AE, Smith Z, Prosser JI, Embley TM (1996) Molecular diversity of soil and marine 16S rRNA gene sequences related to β subgroup ammonia-oxidizing bacteria. Appl Environ Microbiol 62:4147–4154

    PubMed  CAS  Google Scholar 

  29. Tietema A, De Boer W, Riemer L, Verstraten JM (1992) Nitrate production in nitrogen-saturated acid forest soils: vertical distribution and characteristics. Soil Biol Biochem 24:235–240

    Article  CAS  Google Scholar 

  30. Tietema A, Verstraten JM (1992) Nitrogen cycling in an acid forest ecosystem in the Netherlands under increased atmospheric nitrogen input. Biogeochemistry 15:21–46

    Google Scholar 

  31. Torsvik V, Sorheim R, Goksoyr J (1996) Total bacterial diversity in soil and sediment communities—A review. J Indust Microbiol 17:170–178

    Article  CAS  Google Scholar 

  32. Troelstra SR, Wagenaar R, De Boer W (1990) Nitrification in Dutch heathland soils I. General soil characteristics and nitrification in undisturbed soil cores. Plant Soil 127:179–192

    Article  CAS  Google Scholar 

  33. Utaker JB, Bakken L, QQ Jiang, Nes IF (1995) Phylogenetic analysis of seven new isolates of ammonia-oxidizing bacteria based on 16S rRNA gene sequences. Syst Appl Microbiol 18:549–559

    Google Scholar 

  34. Van Breemen N, Burrough PA, Velthorst EJ, Van Dobben HF, De Wit T, De Ridder TB, Reijnders HFR (1982) Acidification from atmospheric ammonium sulphate in forest canopy throughfall. Nature 299:548–550

    Article  Google Scholar 

  35. Verhoef HA, Dorel FG, Zoomer HR (1989) Effect of nitrogen deposition on animal-mediated nitrogen mobilization in coniferous litter. Biol Fertil Soils 8:255–259

    Article  Google Scholar 

  36. Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    PubMed  CAS  Google Scholar 

  37. Zwart G, Huismans R, Van Agterveld MP, Van De Peer Y, De Rijk P, Eenhoorn H, Muyzer G, Van Hannen EJ, Gons HJ, Laanbroek HJ (1998) Divergent members of the bacterial division Verrucomicrobiales in a temperate freshwater lake. FEMS Microbiol Ecol 25:159–169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Laverman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laverman, A.M., Speksnijder, A.G.C.L., Braster, M. et al. Spatiotemporal stability of an ammonia-oxidizing community in a nitrogen-saturated forest soil. Microb Ecol 42, 35–45 (2001). https://doi.org/10.1007/s002480000038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002480000038

Keywords

Navigation