Skip to main content
Log in

DNA homoduplexes containing no pyrimidine nucleotide

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We show using polyacrylamide gel electrophoresis that guanine+adenine repeat strands of DNA associate into homoduplexes at neutral pH and moderate ionic strength. The homoduplexes melt in a cooperative way like the Watson-Crick duplex, although they contain no Watson-Crick base pair. Guanine is absolutely needed for the homoduplex formation and the homoduplex stability increases with the guanine content of the repeat. The present results have implications for the nature of the first replicators, as well as regarding forces stabilizing the duplexes of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Casasnovas JM, Huertas D, Ortiz-Lombardía M, Kypr J, Azorín F (1993) Structural polymorphism of d(GA.TC)n DNA sequences: intramolecular and intermolecular associations of the individual strands. J Mol Biol 233:671–681

    Article  CAS  PubMed  Google Scholar 

  • Dzantiev L, Alekseyev YO, Morales JC, Kool ET, Romano LJ (2001) Significance of nucleobase shape complementarity and hydrogen bonding in the formation and stability of the closed polymerase-DNA complex. Biochemistry 40:3215–3221

    Article  CAS  PubMed  Google Scholar 

  • Finch JT, Klug A (1969) Two double helical forms of polyriboadenylic acid and the pH-dependent transition between them. J Mol Biol 46:597–598

    CAS  PubMed  Google Scholar 

  • Gellert BM, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48:2013–2019

    CAS  Google Scholar 

  • Gilbert W (1986) The RNA world. Nature 319:618

    Google Scholar 

  • Guckian KM, Morales JC, Kool ET (1998) Structure and base pairing properties of a replicable nonpolar isostere for deoxyadenosine. J Org Chem 63:9652–9656

    Article  CAS  Google Scholar 

  • Guschlbauer W, Chantot J-F, Thiele D (1990) Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DNA. J Biomol Struct Dyn 8:491–511

    CAS  PubMed  Google Scholar 

  • Han H, Hurley LH, Salazar M (1999) A DNA polymerase stop assay for G-quadruplex interactive compounds. Nucleic Acids Res 27:537–542

    Article  CAS  PubMed  Google Scholar 

  • Hardin CC, Perry AG, White K (2001) Thermodynamic and kinetic characterization of the dissociation and assembly of quadruplex nucleic acids. Biopolymers 56:147–194

    Article  Google Scholar 

  • Huertas D, Bellsolell L, Casasnovas JM, Coll M, Azorín F (1993) Alternating d(GA)n DNA sequences form antiparallel stranded homoduplexes stabilized by the formation of G.A base pairs. EMBO J 12:4029–4038

    CAS  PubMed  Google Scholar 

  • Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA 84:4398–4402

    CAS  PubMed  Google Scholar 

  • Keniry MA (2001) Quadruplex structures in nucleic acids. Biopolymers 56:123–146

    Article  Google Scholar 

  • Kypr J, Vorlickova M (2001) Dimethylsulphoxide-stabilized conformer of guanine-adenine repeat strand of DNA. Biopolymers (Biospectroscopy) 62:81–84

    Google Scholar 

  • Kypr J, Vorlickova M (2002) Circular dichroism spectroscopy reveals invariant conformation of guanine runs in DNA. Biopolymers (Biospectroscopy) 67:275–277

    Google Scholar 

  • Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: implications for chemical evolution. Proc Natl Acad Sci USA 92:8158–8160

    CAS  PubMed  Google Scholar 

  • Lee JS (1990) The stability of polypurine tetraplexes in the presence of mono- and divalent cations. Nucleic Acids Res 18:6057–6060

    CAS  PubMed  Google Scholar 

  • Lee JS, Evans DH, Morgan AR (1980) Polypurine DNAs and RNAs form secondary structures which may be tetra-stranded. Nucleic Acids Res 8:4305–4320

    CAS  PubMed  Google Scholar 

  • Levy M, Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Biochemistry 95:7933–7938

    Article  CAS  Google Scholar 

  • Morales JC, Kool ET (1998) Efficient replication between non-hydrogen-bonded nucleoside shape analogs. Nat Struct Biol 5:950–954

    Article  CAS  PubMed  Google Scholar 

  • Morales JC, Kool ET (2000) Functional hydrogen-bonding map of the minor groove binding tracks of six DNA polymerases. Biochemistry 39:12979–12988

    Article  CAS  PubMed  Google Scholar 

  • Nielsen PE (1999) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32:624–630

    Article  CAS  Google Scholar 

  • Ohtsuki T, Kimoto M, Ishikawa M, Mitsui T, Hirao I, Yokoyama S (2001) Unnatural base pairs for specific transcription. Proc Natl Acad Sci USA 98:4922–4925

    Article  CAS  PubMed  Google Scholar 

  • Orgel LE (1998) The origin of life: a review of facts and speculations. Trends Biochem Sci 23:491–495

    Article  CAS  PubMed  Google Scholar 

  • Ralph RK, Connors WJ, Khorana HG (1962) Secondary structure and aggregation in deoxyguanosine oligonucleotides. J Am Chem Soc 84:2265–2266

    CAS  Google Scholar 

  • Rich A, Davies DR, Crick FHC, Watson JD (1961) The molecular structure of polyadenylic acid. J Mol Biol 3:71–86

    CAS  Google Scholar 

  • Rippe K, Fritsch V, Westhof E, Jovin TM (1992) Alternating d(G-A) sequences form a parallel-stranded DNA homoduplex. EMBO J 11:3777–3786

    CAS  PubMed  Google Scholar 

  • Shafer RH (1998) Stability and structure of model DNA triplexes and quadruplexes and their interactions with small ligands. Prog Nucleic Acid Res Mol Biol 59:55–94

    CAS  PubMed  Google Scholar 

  • Shapiro R (1995) The prebiotic role of adenine: a critical analysis. Origins Life Evol Biosphere 25:83–98

    CAS  Google Scholar 

  • Shapiro R (1999) Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc Natl Acad Sci USA 96:4396–4401

    Article  CAS  PubMed  Google Scholar 

  • Sowerby SJ, Cohn CA, Heckl WM, Holm NG (2001) Differential adsorption of nucleic acid bases: relevance to the origin of life. Proc Natl Acad Sci USA 98:820–822

    Article  CAS  PubMed  Google Scholar 

  • Tae EL, Wu Y, Xia G, Schultz PG, Romesberg FE (2001) Efforts toward expansion of the genetic alphabet: replication of DNA with three base pairs. J Am Chem Soc 123:7439–7440

    Article  CAS  PubMed  Google Scholar 

  • Usdin K, Woodford KJ (1995) CGG repeats associated with DNA instability and chromosome fragility form structures that block DNA synthesis in vitro. Nucleic Acids Res 23:4202–4209

    CAS  PubMed  Google Scholar 

  • Vorlíčková M, Kejnovská I, Kovanda J, Kypr J (1999) Dimerization of the guanine-adenine repeat strands of DNA. Nucleic Acids Res 27:581–586

    PubMed  Google Scholar 

  • Watson JD, Crick FH (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    CAS  Google Scholar 

  • Wächtershäuser G (1988) An all-purine precursor of nucleic acids. Proc Natl Acad Sci USA 85:1134–1135

    PubMed  Google Scholar 

  • Weitzmann MN, Woodford KJ, Usdin K (1996) The development and use of a DNA polymerase arrest assay for the evaluation of parameters affecting intrastrand tetraplex formation. J Biol Chem 271:20958–20964

    Article  CAS  PubMed  Google Scholar 

  • Weitzmann MN, Woodford KJ, Usdin K (1997) DNA secondary structures and the evolution of hypervariable tandem arrays. J Biol Chem 272:9517–9523

    Article  CAS  PubMed  Google Scholar 

  • Woodford KJ, Howell RM, Usdin K (1994) A novel K+-dependent DNA synthesis arrest site in a commonly occurring sequence motif in eukaryotes. J Biol Chem 269:27029–27035

    CAS  PubMed  Google Scholar 

  • Wu Y, Ogawa AK, Berger M, McMinn DL, Schultz PG, Romesberg FE (2000) Efforts toward expansion of the genetic alphabet: optimization of interbase hydrophobic interactions. J Am Chem Soc 122:7621–7632

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants 301/01/0590 from the Grant Agency of the Czech Republic and A4004201 from the Grant Agency of the Academy of Sciences of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Kypr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kypr, J., Kejnovská, I. & Vorlíčková, M. DNA homoduplexes containing no pyrimidine nucleotide. Eur Biophys J 32, 154–158 (2003). https://doi.org/10.1007/s00249-003-0287-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0287-x

Keywords

Navigation