Skip to main content
Log in

Structural and functional studies of the nicotinic acetylcholine receptor by solid-state NMR

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Over the last seven years, solid-state NMR has been widely employed to study structural and functional aspects of the nicotinic acetylcholine receptor. These studies have provided detailed structural information relating to both the ligand binding site and the transmembrane domain of the receptor. Studies of the ligand binding domain have elucidated the nature and the orientation of the pharmacophores responsible for the binding of the agonist acetylcholine within the agonist binding site. Analyses of small transmembrane fragments derived from the nicotinic acetylcholine receptor have also revealed the secondary structure and the orientation of these transmembrane domains. These experiments have expanded our understanding of the channel’s structural properties and are providing an insight into how they might be modulated by the surrounding lipid environment. In this article we review the advances in solid-state NMR applied to the nicotinic acetylcholine receptor and compare the results with recent electron diffraction and X-ray crystallographic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akabas MH, Kaufmann C, Archdeacon P, Karlin A (1994) Identification of acetylcholine receptor channel lining residues of the entire M2 segment of the alpha-subunit. Neuron 13:919–927

    CAS  PubMed  Google Scholar 

  • Auge S, Mazarguil H, Tropis M, Milon A (1997) Preparation of oriented lipid bilayers on ultrathin polymers for solid state NMR analyses of peptide-membrane interactions. J Magn Reson 124:455–458

    Article  Google Scholar 

  • Barrantes FJ (1993) Structural and functional crosstalk between acetylcholine receptor and its membrane environment. Mol Neurobiol 6:463–482

    Google Scholar 

  • Barrantes FJ (1998) The nicotinic acetylcholine receptor: current views and future trends. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Barrantes FJ, Antollini SS, Blanton MP, Prieto M (2000) Topography of nicotinic acetylcholine receptor membrane-embedded domains. J Biol Chem 275:37333–37339

    PubMed  Google Scholar 

  • Beene DL, Brandt GS, Zhong WG, Zacharias NM, Lester HA, Dougherty DA (2002) Cation-pi interactions in ligand recognition by serotonergic (5HT3A) and nicotinic acetylcholine receptors: the anomalous binding of nicotine. Biochemistry 31:10262–10269

    Article  Google Scholar 

  • Blanton MP, Cohen JB (1994) Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor—secondary structure implications. Biochemistry 33:2859–2872

    CAS  PubMed  Google Scholar 

  • Blanton MP, Dangott LJ, Raja SK, Lala AK, Cohen JB (1998a) Probing the structure of the nicotinic acetylcholine receptor ion channel with the uncharged photoactivable compound H-3 diazofluorene. J Biol Chem 273:8659–8668

    Article  CAS  PubMed  Google Scholar 

  • Blanton MP, McCardy EA, Huggins A, Parikh D (1998b) Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes I-125 TID-BE and I-125 TIDPC/16. Biochemistry 37:14545–14555

    Article  CAS  PubMed  Google Scholar 

  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van der Oost J, Smit AB, Sixma TK (2001) Crystal structure of an acetylcholine binding protein reveals the ligand binding domain of nicotinic receptors. Nature 411:269–276

    Article  CAS  PubMed  Google Scholar 

  • Campagna JA, Miller KW, Forman SA (2003) Mechanisms of action of inhaled anesthetics. New Engl J Med 348:2110–2124

    Article  CAS  PubMed  Google Scholar 

  • Changeux JP, Edelstein SJ (1998) Allosteric receptors after 30 years. Neuron 21:959–980

    CAS  PubMed  Google Scholar 

  • Colquhoun D, Sakmann B (1998) From muscle endplate to brain synapse: a short history of synapses and agonist activated channels. Neuron 20:381–387

    CAS  PubMed  Google Scholar 

  • Corbin J, Methot N, Wang HH, Baenziger JE, Blanton MP (1998) Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and Fourier transform infrared spectroscopy. J Biol Chem 273:771–777

    Article  CAS  PubMed  Google Scholar 

  • de Planque MRR, Separovic F (2001) Interaction of anaesthetics with transmembrane nAChR segments: a solid state NMR study. Biophys J 80:1963

    Google Scholar 

  • de Planque MRR, Rijkers DTS, Separovic F (2003) Conformation of the M1 transmembrane segment of the nicotinic acetylcholine receptor in a membrane environment. Biophys J 84:1116

    Google Scholar 

  • Dougherty DA (1996) Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr and Trp. Science 271:163–168

    CAS  PubMed  Google Scholar 

  • Galzi JL (1992) Mutations in the channel domain of the neuronal nicotinic acetylcholine receptor convert ion selectivity from cationic to anionic. Nature 359:500–505

    CAS  PubMed  Google Scholar 

  • Ge MT, Budil DE, Freed JH (1994) ESR studies of spin-labelled membranes aligned by isopotential spin-dry ultracentrifugation—lipid protein interactions. Biophys J 67:2326–2344

    CAS  PubMed  Google Scholar 

  • Glaubitz C, Watts A (1998) Magic angle-oriented sample spinning (MAOSS): a new approach toward biomembrane studies. J Magn Reson 130:305–316

    Article  CAS  PubMed  Google Scholar 

  • Grant MA, Gentile LN, Shi QL, Pellegrini M, Hawrot E (1999) Expression and spectroscopic analysis of soluble nicotinic acetylcholine receptor fragments derived from the extracellular domain of the alpha-subunit. Biochemistry 38:10730–10742

    Article  CAS  PubMed  Google Scholar 

  • Grobner G, Taylor A, Williamson PTF, Choi G, Glaubitz C, Watts JA, deGrip WJ, Watts A (1997) Macroscopic orientation of natural and model membranes for structural studies. Anal Biochem 254:132–138

    Article  CAS  PubMed  Google Scholar 

  • Jarrell HC, Jovall PA, Giziewicz JB, Turner LA, Smith ICP (1987) Determination of conformational properties of glycolipid headgroups by H-2 NMR of oriented multibilayers. Biochemistry 26:1805–1811

    CAS  PubMed  Google Scholar 

  • Karlin A, Kao PN, Dipaola M (1986) Molecular pharmacology of the nicotinic acetylcholine receptor. Trends Pharmacol Sci 7:304–308

    Article  CAS  Google Scholar 

  • Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Article  CAS  PubMed  Google Scholar 

  • Lena C, Changeux JP (1997) Pathological mutations of nicotinic receptors and nicotine based therapies for brain disorders. Curr Opin Neurobiol 7:674–682

    CAS  PubMed  Google Scholar 

  • Lugovskoy AA, Maslennikov IV, Utkin YN, Tsetlin VI, Cohen JB, Arseniev A (1998) Spatial structure of the M3 transmembrane segment of the nicotinic acetylcholine receptor alpha-subunit. Eur J Biochem 255:455–461

    Article  CAS  PubMed  Google Scholar 

  • Mesleh MF, Lee S, Veglia G, Thiriot DS, Marassi FM, Opella SJ (2003) Dipolar waves map the structure and topology of helices in membrane proteins. J Am Chem Soc 125:8928–8935

    Article  CAS  PubMed  Google Scholar 

  • Michelson MJ, Zeimal EJ (1973) Acetylcholine: an approach to molecular mechanism and action. Pergamon, Oxford, p 82

  • Miller KW (2002) The nature of sites of general anaesthetic action. Br J Anaesth 89:17–21

    Article  CAS  PubMed  Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  CAS  Google Scholar 

  • Moise L, Piserchio A, Basus VJ, Hawrot E (2002) NMR structural analysis of alpha bungarotoxin and its complex with the principle alpha-neurotoxin-binding sequence on the alpha-7 subunit of the neuronal nicotinic acetylcholine receptor. J Biol Chem 277:12406–12417

    Article  CAS  PubMed  Google Scholar 

  • Nevzorov AA, Opella SJ (2003) Structural fitting of PISEMA spectra of aligned proteins. J Magn Reson 160:33–39

    Article  CAS  PubMed  Google Scholar 

  • Oiki S, Madison V, Montal M (1990) Bundles of amphipathic transmembrane alpha-helices as a structural motif for ion-conducting proteins: studies on sodium channels and acetylcholine receptors. Proteins 8:226–236

    CAS  PubMed  Google Scholar 

  • Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol 6:374–379

    Article  CAS  PubMed  Google Scholar 

  • Ottiger M, Bax A (1999) Bicelle-based liquid crystals for NMR measurement of dipolar couplings at acidic and basic pH values. J Biomol NMR 13:187–191

    Article  CAS  PubMed  Google Scholar 

  • Pashkov VS, Maslennikov IV, Tchikin LD, Efremov RG, Ivanov VT, Arseniev A (1999) Spatial structure of the M2 transmembrane domain of the nicotinic acetylcholine receptor alpha subunit. FEBS Lett 457:117–121

    Article  CAS  PubMed  Google Scholar 

  • Penner GH, Zhao BY, Jeffrey KR (1995) Molecular dynamics in the solid trimethylamine-borane complex—a deuterium NMR study. Z Naturforsch A 50:81–89

    CAS  Google Scholar 

  • Sanders CR, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid state NMR. Biochemistry 31:8898–8905

    CAS  PubMed  Google Scholar 

  • Seelig J (1977) Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 10:355–418

    Google Scholar 

  • Silman I, Karlin A (1969) Acetylcholine receptor—covalent attachment of depolarizing groups at active site. Science 164:1420–1421

    CAS  PubMed  Google Scholar 

  • Sizun C, Bechinger B (2002) Bilayer sample for fast or slow magic angle oriented sample spinning solid-state NMR spectroscopy. J Am Chem Soc 124:1146–1147

    Article  CAS  PubMed  Google Scholar 

  • Skok M, Lykhmus E, Bobrovnik S, Tzarto S, Tsouloufis T, Vanderesse R, Coutrot F, Cung MT, Marraud M, Krikorian D, Sakarellos M (2001) Structure of epitopes recognized by the antibodies to alpha(181–192) peptides of the neuronal nicotinic acetylcholine receptors: extrapolation to the structure of the acetylcholine binding site. J Neuroimmunol 121:59–66

    Article  CAS  PubMed  Google Scholar 

  • Toyoshima C, Kubalek E, Unwin N (1988) Structure of the acetylcholine receptor in the resting and desensitized states. Biophys J 53:A492–A492

    Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    CAS  PubMed  Google Scholar 

  • Unwin N (2000) The Croonian lecture 2000. Nicotinic acetylcholine receptor and the structural basis of fast synaptic transmission. Philos Trans R Soc London Ser B 355:1813–1829

    Article  CAS  Google Scholar 

  • Unwin N, Miyazawa A, Li J, Fujiyoshi Y (2002) Activation of the nicotinic acetylcholine receptor involves a switch in conformation of the a subunits. J Mol Biol 319:1165–1176

    Article  CAS  PubMed  Google Scholar 

  • Williamson PTF, Grobner G, Spooner PJR, Miller KW, Watts A (1998) Probing the agonist binding pocket in the nicotinic acetylcholine receptor: a high-resolution solid-state NMR approach. Biochemistry 37:10854–10859

    Article  CAS  PubMed  Google Scholar 

  • Williamson PTF, Watts JA, Addona GH, Miller KW, Watts A (2001a) Dynamics and orientation of N+(CD3)(3)-bromoacetylcholine bound to its binding site on the nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 98:2346–2351

    Article  CAS  PubMed  Google Scholar 

  • Williamson PTF, Zandomeneghi G, Bonev B, Barrantes FJ, Watts A, Meier BH (2001b) Structural characterization of the M4-TMD of the nicotinic acetylcholine receptor by VASS NMR of ordered liquid crystalline phases. Biophys J 80:699

    Google Scholar 

  • Williamson PTF, Ernst M, Meier BH (2003) MAS solid state NMR of isotopically enriched biological samples. In: Zerbe O (ed) BioNMR in drug research. Wiley-VCH, Weinheim, pp 243–282

  • Wishart DS, Sykes BD (1994) The C-13 chemical-shift index—a simple method for the identification of protein secondary structure using C-13 chemical-shift data. J Biomol NMR 4:171–180

    CAS  PubMed  Google Scholar 

  • Yao Y, Wang JM, Viroonchatapan N, Samson A, Chill J, Rothe E, Angliste J, Wang ZZ (2002) Yeast expression and NMR analysis of the extracellular domain of muscle nicotinic acetylcholine receptor alpha-subunit. J Biol Chem 277:12613–12621

    Article  CAS  PubMed  Google Scholar 

  • Zandomeneghi G, Tomaselli M, Williamson PTF, Meier BH (2003a) NMR of bicelles: orientation and mosaic spread of the liquid crystal director under sample rotation. J Biomol NMR 25:113–123

    Article  CAS  PubMed  Google Scholar 

  • Zandomeneghi G, Williamson PTF, Hunkler A, Meier BH (2003b) Switched-angle spinning applied to bicelles containing phospholipid-associated peptides. J Biomol NMR 25:125–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.J. Opella, F. Separovic and M.R.R. de Planque are gratefully acknowledged for helpful discussions on their latest studies on the transmembrane domain of the nicotinic acetylcholine receptor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. T. F. Williamson.

Additional information

Presented at the Biophysical Society Meeting on “Ion channels – from structure to disease” held in May 2003, Rennes, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, P.T.F., Meier, B.H. & Watts, A. Structural and functional studies of the nicotinic acetylcholine receptor by solid-state NMR. Eur Biophys J 33, 247–254 (2004). https://doi.org/10.1007/s00249-003-0380-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0380-1

Keywords

Navigation