Skip to main content
Log in

Probing elasticity and adhesion of live cells by atomic force microscopy indentation

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Atomic force microscopy (AFM) indentation has become an important technique for quantifying the mechanical properties of live cells at nanoscale. However, determination of cell elasticity modulus from the force–displacement curves measured in the AFM indentations is not a trivial task. The present work shows that these force–displacement curves are affected by indenter-cell adhesion force, while the use of an appropriate indentation model may provide information on the cell elasticity and the work of adhesion of the cell membrane to the surface of the AFM probes. A recently proposed indentation model (Sirghi, Rossi in Appl Phys Lett 89:243118, 2006), which accounts for the effect of the adhesion force in nanoscale indentation, is applied to the AFM indentation experiments performed on live cells with pyramidal indenters. The model considers that the indentation force equilibrates the elastic force of the cell cytoskeleton and the adhesion force of the cell membrane. It is assumed that the indenter-cell contact area and the adhesion force decrease continuously during the unloading part of the indentation (peeling model). Force–displacement curves measured in indentation experiments performed with silicon nitride AFM probes with pyramidal tips on live cells (mouse fibroblast Balb/c3T3 clone A31-1-1) in physiological medium at 37°C agree well with the theoretical prediction and are used to determine the cell elasticity modulus and indenter-cell work of adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Afrin R, Yamada T, Ikai A (2004) Analysis of force curves obtained on the live cell membrane using chemically modified AFM probes. Ultramicroscopy 100:187–195

    Article  Google Scholar 

  • A-Hassan E, Heinz WF, Antonik MD, D’Costa NP, Nageswaran S, Schoenenberger C-A, Hoh JH (1998) Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 74:1564–1578

    Google Scholar 

  • Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B, Farree R, Navajas D (2003) Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys J 84:2071–2079

    Google Scholar 

  • Andersen L K, Cortera SA, Justesen J, Duch M, Hansen O, Chevallier J, Foss M, Pedersen FS and, Besenbacher F (2005) Cell volume increase in murine MC3T3-E1 Pre-ostereoblasts attaching onto biocompatible tantalum observed by magnetic AC mode atomic force microscopy. Euro Cells Mater 10:61–69

    Google Scholar 

  • Antunes JM, Menezes LF, Fernandes JV (2006) Three-dimensional numerical simulation of Vickers indentation tests. Int J Solids Struct 43:784–806

    Article  MATH  Google Scholar 

  • Burnham NA, Chen X, Hodges CS, Matei GA, Thoreson EJ, Roberts CJ, Davies MC, Tendler SJB (2003) Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14:1–6

    Article  ADS  Google Scholar 

  • Indrajit R, Tymish YO, Dhruba JB, Haridas EP, Ruth AM, Navjot K, Paras NP (2005) Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral nanomedicine approach for gene delivery. PNAS 102:279–284

    Article  Google Scholar 

  • Israelachivili JN (1992) Intermolecular and surface forces, 2nd edn. Academic Press, London

    Google Scholar 

  • Jena BP (2002) Fusion pore in live cells. News Physiol Sci 17:219–222

    Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A324:301–313

    ADS  Google Scholar 

  • Jung Y-G, Lawn BR, Martyniuk M, Huang H, Hu XZ (2004) Evaluation of elastic modulus and hardness of thin films by nanoindentation. J Mater Res 19:3076–3080

    Article  ADS  Google Scholar 

  • King RB (1987) Elastic analysis of some punch problems for a layered medium. Int J Solids Struct 23:1657–1664

    Article  MATH  Google Scholar 

  • Lim CT, Zhou EH, Quek ST (2006) Mechanical models for living cells-a review. J Biomech 39:195–216

    Article  Google Scholar 

  • Murphy MF, Lalor MJ, Manning FCR, Lilley F, Crosby SR, Randall C and, Burton DR (2006) Comparative study of the conditions required to image live human epithelial and fibroblast cells using atomic force microscopy. Microsc Res Tech 69:757–765

    Article  Google Scholar 

  • McNamee CE, Nayoung P, Tanaka S, Kanda Y and, Higashitani K (2006a) Imaging of a soft, weakly adsorbing, living cell with a colloid probe tapping atomic force microscope technique. Colloids Surf B Biointerf 47:85–89

    Article  Google Scholar 

  • McNamee CE, Pyo N, Tanaka S, Vakarelski IU, Kanda Y, Higashitani K (2006b) Parameters affecting the adhesion strength between a living cell and a colloid probe when measured by the atomic force microscope. Colloids Surf B Biointerf 48:176–182

    Article  Google Scholar 

  • Obataya I, Nakamura Ch, Han SW, Nakamura N, Miyake J (2005) Nanoscale operation of a living cell using an atomic force microscope with nanoneedle. Nano Lett 5:27–30

    Article  ADS  Google Scholar 

  • Oberdorster G, Oberdorster EJ (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Perspect 113:823–839

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  ADS  Google Scholar 

  • Pesen D, Hoh JH (2005) Micromechanical architecture of the endothelial cell cortex. Biophys J 88:670–679

    Article  Google Scholar 

  • Rabinovich Y, Esayanur M, Daosukho S, Byer K, El-Shall H, Khan S (2005) Atomic force microscopy measurement of the elastic properties of the kidney epithelial cells. J Colloid Interface Sci 285:125–135

    Article  Google Scholar 

  • Robert A, Freitas Jr JD (2005) What is nanomedicine? Nanomed Nanotechnol Biol Med 1:2–9

    Article  Google Scholar 

  • Rotsch C, Radmacher M (2000) Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J 78:520–535

    Google Scholar 

  • Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscopy. In: Jena BP, Horber JK (eds) Methods in Cell Biology, vol 68. Academic Press, Elsevier, New York, Amsterdam, pp 67–90

  • Rotsch C, Braet F, Wisse E, Radmacher M (1997) AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol Int 11:685–696

    Article  Google Scholar 

  • Schaus SS, Henderson ER (1997) Cell viability and probe-cell membrane interactions of XR1 glial cells imaged by atomic force microscopy. Biophys J 73:1205–1214

    Google Scholar 

  • Seifert U, Lipowsky R (1995) The structure and dynamics of membranes. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics, vol 1. Elsevier, Amsterdam

  • Sen S, Subramanian S, Disher DE (2005) Indentation and adhesive probing of cell memmbrane with AFM: theoretical model and experiments. Biophys J 89:3203–3213

    Article  Google Scholar 

  • Simon A, Durrieu M-C (2006) Review. Strategies and results of atomic force microscopy in the study of cellular adhesion. Micron 37:1–13

    Article  Google Scholar 

  • Shen Y, Sun J L, Zhang A, Hu J, Xu L X (2007) A new image correction method for live cell atomic force microscopy. Phys Med Biol 52:2185–2196

    Article  Google Scholar 

  • Sirghi L, Rossi F (2006) Adhesion and elasticity in nanoscale indentation. Appl Phys Lett 89:243118–243120

    Article  ADS  Google Scholar 

  • Sneddon I N (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  MATH  MathSciNet  Google Scholar 

  • Sun SX, Wirtz D (2006) Mechanics of enveloped virus entry into host cells. Biophys J 89:L10–12

    Article  Google Scholar 

  • Sun M, Graham J S, Hagedus B, Marga F, Zhang Y, Forgacs G, Grandbois M (2005) Multiple membrane tethers probed by atomic force microscopy. Biophys J 89:4320–4329

    Article  Google Scholar 

  • Zhu Ch (2000) Kinetick and mechanics of cell adhesion. J Biomech 33:23–33

    Article  Google Scholar 

  • Zhu AP, Fang N, Chan-Park MB, Chan V (2006) Adhesion contact dynamics of 3T3 fibroblasts on poly (lactide-co-glycoide acid). Surf Modified Photochem Immobil Biomacromolec Biomater 27:2566–2576

    Google Scholar 

Download references

Acknowledgment

We are grateful to Mr. Takao Sasaki for SEM images of the AFM probes used in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Sirghi or F. Rossi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material (DOC 674 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sirghi, L., Ponti, J., Broggi, F. et al. Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur Biophys J 37, 935–945 (2008). https://doi.org/10.1007/s00249-008-0311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-008-0311-2

Keywords

Navigation