Skip to main content
Log in

Chemotherapeutic potential of 9-phenyl acridine: biophysical studies on its binding to DNA

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Acridines and their derivatives are well-known probes for nucleic acids as well as being relevant in the field of drug development to establish new chemotherapeutic agents. We have shown from molecular modelling studies that 9-phenyl acridine and some of its derivatives can act as inhibitors of topoisomerase I and thus have potential to act as anticancer agents. Rational design of new compounds for therapeutics requires knowledge about their structural stability and interactions with various cellular macromolecules. In this regard it is important to know how these molecules would interact with DNA. Here we report the interaction of 9-phenyl acridine (ACPH) with calf thymus DNA (CT-DNA) based on various biophysical and molecular modelling studies. Spectrophotometric studies indicated that ACPH binds to CT-DNA. DNA melting studies revealed that binding of ACPH to CT-DNA resulted in a small increase in melting temperature, which is unlikely in case of classical intercalator; rather, it indicates external binding. Viscosity measurements show that ACPH exhibits groove binding. Competitive binding of ACPH to CT-DNA pre-bound to ethidium bromide (EB) showed slow quenching. Measurement of the binding constant of ACPH by fluorescent intercalator displacement (FID) assay corroborated the notion that there was groove binding. Molecular modelling studies also supported this finding. Results indicate that binding of ACPH is through partial intercalation in the minor groove of DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACPH:

9-Phenyl acridine

T m :

DNA melting temperature

FID:

Fluorescent intercalator displacement

EB:

Ethidium bromide

References

  • Adams A, Guss JM, Denny WA, Wakelin LPG (2004) Structure of 9-amino- [N-(2-dimethylamino)propyl]acridine-4-carboxamide bound to d(CGTACG)2: a comparison of structures of d(CGTACG)2 complexed with intercalators in the presence of cobalt. Acta Crystallogr D 60:823–828

    Article  PubMed  Google Scholar 

  • Arkin M (2005) Protein-protein interactions and cancer: small molecules going in for the kill. Curr Opin Chem Biol 9:317–324

    Article  CAS  PubMed  Google Scholar 

  • Arya DP, Willis B (2003) Reaching into the major groove of B-DNA: synthesis and nucleic acid binding of a Neomycin-Hoechst 33258 conjugate. J Am Chem Soc 125:12398–12399

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Ge Q, Wang J, Li T, Liu Q, Lu Z (2005) Investigation of DNA–protein sequence-specific interactions with a ds-DNA array. Molecules 10:417–426

    Article  CAS  PubMed  Google Scholar 

  • Bhowmik S, Bagchi A, Ghosh R (2008) Molecular modelling studies of some 9-arylacridines to elucidate their possible roles in topoisomerase I inhibition. Int J Integr Biol 2:8–14

    CAS  Google Scholar 

  • Biver T, Biasi AD, Secco F, Venturini M, Yarmoluk S (2005) Cyanine dyes as intercalating agents: kinetic and thermodynamic studies on the DNA/Cyan40 and DNA/CCyan2 systems. Biophys J 89:374–383

    Article  CAS  PubMed  Google Scholar 

  • Boger DL, Fink BE, Hedrick MP (2000) Total synthesis of distamycin A and 2640 analogues: a solution-phase combinatorial approach to the discovery of new, bioactive DNA binding agents and development of a rapid, highthroughput screen for determining relative DNA binding affinity or DNA binding sequence selectivity. J Am Chem Soc 122:6382–6394

    Article  CAS  Google Scholar 

  • Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Melchiorre C (2008) From dual binding site acetylcholineseterase inhibitors to Multi-target-directed ligands (MTDLs): a step forward in the treatment of Alzheimer’s Disease. Mini Rev Med Chem 8:960–967

    Article  CAS  PubMed  Google Scholar 

  • Brana MF, Cacho M, Gradillas A, de Pascual-Teresa B (2001) Ramos a intercalators as anticancer drugs. Curr Pharm Des 7:1745–1780

    Article  CAS  PubMed  Google Scholar 

  • Burda JV, Sponer J, Leszczynski J, Hobza P (1997) Interaction of DNA base pairs with various metal cations (Mg2+, Ca2+, Sr2+, Ba2+, Cu+, Ag+, Au+, Zn2+, Cd2+, and Hg2+): nonempirical ab initio calculations on structures, energies, and nonadditivity of the interaction. J Phys Chem 101:9670–9677

    CAS  Google Scholar 

  • Burkoff AM, Tullius TD (1988) TD Structural details of an adenine tract that does not cause DNA to bend. Nature 331:455–457

    Article  Google Scholar 

  • Cain BF, Atwell GJ (1974) The experimental antitumour properties of three congeners of the acridylmethanesulphonanilide (AMSA) series. Eur J Cancer 10:539–549

    CAS  PubMed  Google Scholar 

  • Cate JH, Doudna JA (1996) Metal-binding sites in the major groove of a large ribozyme domain. Structure 4:1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Cholody WM, Martelli S, Konopat J (1990) 8-Substituted 5-[(Aminoalkyl) amino]-6H-v-triazolo[4, 5, 1-de] acridin-6-ones as potential antineoplastic agents. Synthesis and biological activity. J Med Chem 33:2852–2856

    Article  CAS  PubMed  Google Scholar 

  • Cholody WM, Martelli S, Konopat J (1992) Chromophore-modified antineoplastic imidazoacridinones. Synthesis and activity against murineleukemias. J Med Chem 35:378–382

    Article  CAS  PubMed  Google Scholar 

  • Cohen G, Eisenberg H (1969) Viscosity and sedimentation study of sonicated DNA-proflavine complexes. Biopolymers 8:45–55

    Article  CAS  Google Scholar 

  • Colella G, Bonfanti M, D’lncalci M, Broggini M (1996) Characterization of a protein recognizing minor groove binders-damaged DNA. Nucleic Acids Res 24:4227–4233

    Article  CAS  PubMed  Google Scholar 

  • Datta I, Das TK, Ghosh S (1990) Studies on enamides. Part-4: photochemical investigations of N-aroyldiphenylamines. Tetrahedron 46:6821–6830

    Article  CAS  Google Scholar 

  • Dilda PJ, Hogg PJ (2007) Arsenical-based drugs. Cancer Treat Rev 33:542–564

    Article  CAS  PubMed  Google Scholar 

  • Graves DE, Velea LM (2000) Intercalative binding of small molecules to nucleic acids. Curr Org Chem 4:915–929

    Article  CAS  Google Scholar 

  • Gupta N, Grover N, Neyhart GA, Liang W, Singh P, Thorp HH (1992) [RuO (dppz)(tpy)]2+: a DNA cleavage agent with high DNA affinity. Angew Chem Int Ed Engl 31:1048–1050

    Article  Google Scholar 

  • Harris CC (1996) Structure and function of p53 tumor supressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst 88:1442–1455

    Article  CAS  PubMed  Google Scholar 

  • Hegde ML, Anitha S, Latha KS, Mustak MS, Stein R, Ravid R, Rao KSJ (2004) First evidence for helical transitions in supercoiled DNA by amyloid â peptide (1–42) and aluminum: a new insight in understanding Alzheimer’s disease. J Mol Neurosci 22:19–32

    Article  PubMed  Google Scholar 

  • Honig B, Sharp K, Yang AS (1993) Microscopic models of aqueous solutions: biological and chemical applications. J Phys Chem 97:1101–1109

    Article  CAS  Google Scholar 

  • Hurwitz J, Furth JJ, Malamy M, Alexander M (1962) The role of deoxyribonucleic acid in ribonucleic acid synthesis, III. The inhibition of the enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavin. Proc Natl Acad Sci U S A 48:1222–1230

    Article  CAS  PubMed  Google Scholar 

  • Kohn KW (1996) Beyond DNA cross-linking: history and prospects of DNA targeted cancer treatment-fifteenth Bruce F. Cain memorial award lecture. Cancer Res 56:5533–5546

    CAS  PubMed  Google Scholar 

  • Lavigne P, Bagu JR, Boyko R, Willard L, Holmes CF, Sykes BD (2000) Structure-based thermodynamic analysis of the dissociation of protein phosphatase-1 catalytic subunit and microcystin-LR docked complexes. Protein Sci 9:252–264

    CAS  PubMed  Google Scholar 

  • Lee M, Rhodes AL, Wyatt MD, Forror S, Hartley JA (1993) GC base sequence recognition by oligoimidazolecarboxamide and C-terminusmodified analogs of distamycin deduced from circular dichroism, proton nuclear magnetic resonance, and methidiumpropylethylenediaminetetraacetate–iron (II) footprinting studies. Biochemistry 32:4237–4245

    Article  CAS  PubMed  Google Scholar 

  • Leopold WR, Nelson JM, Plowman J, Jackson RC (1985) Anthrapyrazoles, a new class of intercalating agents with high-level, broad spectrum activity against murine tumors. Cancer Res 45:5532–5539

    CAS  PubMed  Google Scholar 

  • LoRusso P, Wozniak AJ, Polin L, Capps D, Leopold WR, Werbel LM, Biernat L, Dan ME, Corbett TH (1990) Antitumor efficacy of PD115934 (NSC 366140) against solid tumors of mice. Cancer Res 50:4900–4905

    CAS  PubMed  Google Scholar 

  • Marmur I (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Murdock KC, Child RG, Fabio PF, Angier RB (1979) Antitumor agents. 1. 1, 4-bis[(aminoalkyl)amino]-9, l0-anthracenediones. J Med Chem 22:1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Neyhart GA, Grover N, Smith SR, Kalsbeck WA, Fairley TA, Cory M, Thorp HH (1993) Binding and kinetics studies of oxidation of DNA by oxoruthenium (IV). J Am Chem Soc 115:4423–4428

    Article  CAS  Google Scholar 

  • Nicholls A, Honig B (1991) A rapid difference algorithm, utilizing successive over relaxation to solve the Poisson-Boltzmann equation. J Comp Chem 12:435–445

    Article  CAS  Google Scholar 

  • Rajendran A, Nair BU (2006) Unprecendented dual binding behaviour of acridine group of dye: a combined experimental and theoretical investigation for the development of anticancer chemotherapeutic agents. Biochim Biophys Acta 1760:1794–1801

    CAS  PubMed  Google Scholar 

  • Rueda M, Luque FJ, Orozco M (2005) Nature of minor-groove binders—DNA complexes in the gas phase. J Am Chem Soc 127:11690–11698

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Polak V, Shatsky M, Halperin I, Benyamini H, Barzilai A, Dror O, Haspel N, Nussinov R, Wolfson HJ (2003) Taking geometry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins 52:107–112

    Article  CAS  PubMed  Google Scholar 

  • Sharp B, Nichols A, Friedman R, Honig B (1991) Extracting gydrophobic free energies from experimental data: relationship to protein folding and theoretical models. Biochemistry 30:9686–9697

    Article  CAS  PubMed  Google Scholar 

  • Shim YH, Arimondo PB, Laigle A, Garbesi A, Lavielle S (2004) Relative DNA binding affinity of helix 3 homeodomain analogues, major groove binders, can be rapidly screened by displacement of prebound ethidium bromide. A comparative study. Org Biomol Chem 2:915–921

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Chhina S, Sharma VK, Sachdev SS (1982) Cationic hydrogenation of benzyl alcohols and arylethylenes using acridine derivatives as hindered NADH models. J Chem Soc Chem Commun 453–454

  • Thuong NT, Helene C (1993) Sequence-specific recognition and modification of double-helical DNA by oligonucleotides. Angew Chem Int Ed Engl 32:666–690

    Article  Google Scholar 

  • Trieb M, Rauch C, Wibowo FR, Wellenzohn B, Liedl KR (2004) Cooperative effects on the formation of intercalation sites. Nucleic Acids Res 32:4696–4703

    Article  CAS  PubMed  Google Scholar 

  • Tullius TD, Dombroski BA (1985) Iron (II) EDTA used to measure the helical twist along any DNA molecule. Science 230:679–681

    Article  CAS  PubMed  Google Scholar 

  • Uma V, Kanthimathi M, Weyhermuller T (2005) Nair BU oxidative DNA cleavage mediated by a new copper (II) terpyridine complex: crystal structure and DNA binding studies. J Inorg Biochem 99:2299–2307

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan VG, Nair BU (2003) Synthesis, characterization and binding studies of chromium(III) complex containing an intercalating ligand with DNA. J Inorg Biochem 95:334–342

    Article  CAS  PubMed  Google Scholar 

  • Vaidyanathan VG, Nair BU (2005) Synthesis, characterization and electrochemical studies of mixed ligand complexes of ruthenium(II) with DNA. Dalton Trans 17:2842–2848

    Article  PubMed  Google Scholar 

  • Vijayalakshmi R, Kanthimathi M, Subramanian V, Nair BU (2000) Interaction of DNA with [Cr(Schiff base)](H2O)2)]ClO4. Biochim Biophys Acta 1475:157–162

    CAS  PubMed  Google Scholar 

  • Wang J, Li T, Bai Y, Zhu Y, Lu Z (2003) Fabrication of unimolecular doublestranded DNA microarrays on solid surfaces for probing DNA–protein/drug interactions. Molecules 8:153–168

    Article  CAS  Google Scholar 

  • Wesierska-Gadek J, Schloffer D, Gueorguieva M, Uhl M, Skladanowski A (2004) Increased susceptibility of poly(ADP-ribose) polymerase-1 knockout cells to antitumour triazoloacridone C-1305 is associated with permanent G2 cell cycle arrest. Cancer Res 64:4487–4497

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Du F, Zhang P, Khan IA, Chen J, Liang Y (2005) Thermodynamics of the interaction of aluminum ions with DNA: implications for the biological function of aluminum. J Inorg Biochem 99:1145–1154

    Article  CAS  PubMed  Google Scholar 

  • Zee-Cheng RKY, Cheng CC (1978) Antineoplastic agents. Structure–activity relationship study of bis (substituted aminoalky1amino)anthraquinones. J Med Chem 21:291–294

    Article  CAS  PubMed  Google Scholar 

  • Zipper H, Brunner H, Bernhangen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32:103

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University of Kalyani for providing a fellowship to Sudipta Bhowmik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, R., Bhowmik, S., Bagchi, A. et al. Chemotherapeutic potential of 9-phenyl acridine: biophysical studies on its binding to DNA. Eur Biophys J 39, 1243–1249 (2010). https://doi.org/10.1007/s00249-010-0577-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0577-z

Keywords

Navigation