Skip to main content
Log in

Comparative analysis of the orientation of transmembrane peptides using solid-state 2H- and 15N-NMR: mobility matters

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Many solid-state nuclear magnetic resonance (NMR) approaches for membrane proteins rely on orientation-dependent parameters, from which the alignment of peptide segments in the lipid bilayer can be calculated. Molecules embedded in liquid-crystalline membranes, such as monomeric helices, are highly mobile, leading to partial averaging of the measured NMR parameters. These dynamic effects need to be taken into account to avoid misinterpretation of NMR data. Here, we compare two common NMR approaches: 2H-NMR quadrupolar waves, and separated local field 15N–1H polarization inversion spin exchange at magic angle (PISEMA) spectra, in order to identify their strengths and drawbacks for correctly determining the orientation and mobility of α-helical transmembrane peptides. We first analyzed the model peptide WLP23 in oriented dimyristoylphosphatidylcholine (DMPC) membranes and then contrasted it with published data on GWALP23 in dilauroylphosphatidylcholine (DLPC). We only obtained consistent tilt angles from the two methods when taking dynamics into account. Interestingly, the two related peptides differ fundamentally in their mobility. Although both helices adopt the same tilt in their respective bilayers (~20°), WLP23 undergoes extensive fluctuations in its azimuthal rotation angle, whereas GWALP23 is much less dynamic. Both alternative NMR methods are suitable for characterizing orientation and dynamics, yet they can be optimally used to address different aspects. PISEMA spectra immediately reveal the presence of large-amplitude rotational fluctuations, which are not directly seen by 2H-NMR. On the other hand, PISEMA was unable to define the azimuthal rotation angle in the case of the highly dynamic WLP23, though the helix tilt could still be determined, irrespective of any dynamics parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afonin S, Grage SL, Ieronimo M, Parvesh W, Ulrich AS (2008) Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers, observed by solid state 19F NMR spectroscopy. J Am Chem Soc 130:16512–16514

    Article  PubMed  CAS  Google Scholar 

  • Cornell BA, Separovic F, Baldassi AJ, Smith R (1988) Conformation and orientation of gramicidin A in oriented phospholipid bilayers measured by solid state carbon-13 NMR. Biophys J 53:67–76

    Article  PubMed  CAS  Google Scholar 

  • Esteban-Martín S, Salgado J (2007) The dynamic orientation of membrane-bound peptides: bridging simulations and experiments. Biophys J 93:4278–4288

    Article  PubMed  Google Scholar 

  • Esteban-Martín S, Strandberg E, Fuertes G, Ulrich AS, Salgado J (2009a) Influence of whole-body dynamics on 15N PISEMA NMR spectra of membrane peptides: a theoretical analysis. Biophys J 96:3233–3241

    Article  PubMed  Google Scholar 

  • Esteban-Martín S, Giménez D, Fuertes G, Salgado J (2009b) Orientational landscapes of peptides in membranes: prediction of 2H NMR couplings in a dynamic context. Biochemistry 48:11441–11448

    Article  PubMed  Google Scholar 

  • Esteban-Martín S, Strandberg E, Salgado J, Ulrich AS (2010) Solid state NMR analysis of peptides in membranes: influence of dynamics and labeling scheme. Biochim Biophys Acta 1798:252–257

    Article  PubMed  Google Scholar 

  • Grage SL, Afonin S, Ulrich AS (2010) Dynamic transitions of membrane active peptides. Methods Mol Biol 618:183–207

    Article  PubMed  CAS  Google Scholar 

  • Holt A, Koehorst RBM, Rutters-Meijneke T, Gelb MH, Rijkers DTS, Hemminga MA, Killian JA (2009) Tilt and rotation angles of a transmembrane model peptide as studied by fluorescence spectroscopy. Biophys J 97:2258–2266

    Article  PubMed  CAS  Google Scholar 

  • Holt A, Rougier L, Reat V, Jolibois F, Saurel O, Czaplicki J, Killian JA, Milon A (2010) Order parameters of a transmembrane helix in a fluid bilayer: case study of a WALP peptide. Biophys J 98:1864–1872

    Article  PubMed  CAS  Google Scholar 

  • Im W, Brooks CL III (2005) Interfacial folding and membrane insertion of designed peptides studied by molecular dynamics simulations. Proc Natl Acad Sci USA 102:6771–6776

    Article  PubMed  CAS  Google Scholar 

  • Jo S, Im W (2011) Transmembrane helix orientation and dynamics: insights from ensemble dynamics with solid-state NMR observables. Biophys J 100:2913–2921

    Article  PubMed  CAS  Google Scholar 

  • Killian JA, Salemink I, de Planque MR, Lindblom G, Koeppe RE II, Greathouse DV (1996) Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane α-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry 35:1037–1104

    Article  PubMed  CAS  Google Scholar 

  • Kim T, Jo S, Im W (2011) Solid-state NMR ensemble dynamics as a mediator between experiment and simulation. Biophys J 100:2922–2928

    Article  PubMed  CAS  Google Scholar 

  • Lee DK, Wei Y, Ramamoorthy A (2001) A two dimensional magic-angle decoupling and magic-angle turning solid-state NMR method: an application to study chemical shift tensors from peptides that are nonselectively labeled with 15N isotope. J Phys Chem B 105:4752–4762

    Article  CAS  Google Scholar 

  • Marassi FM, Opella SJ (2000) A solid-state NMR index of membrane protein structure and topology. J Magn Reson 144:156–161

    Article  PubMed  CAS  Google Scholar 

  • Monticelli L, Tieleman DP, Fuchs PFJ (2010) Interpretation of 2H-NMR experiments on the orientation of the transmembrane helix WALP23 by computer simulations. Biophys J 99:1455–1464

    Article  PubMed  CAS  Google Scholar 

  • Nevzorov AA, Opella SJ (2007) Selective averaging for high-resolution solid-state NMR spectroscopy of aligned samples. J Magn Reson 185:59–70

    Article  PubMed  CAS  Google Scholar 

  • Özdirekcan S, Rijkers DTS, Liskamp RM, Killian JA (2005) Influence of flanking residues on tilt and rotation angles of transmembrane peptides in lipid bilayers. A solid-state 2H NMR study. Biochemistry 44:1004–1012

    Article  PubMed  Google Scholar 

  • Özdirekcan S, Etchebest C, Killian JA, Fuchs PF (2007) On the orientation of a designed transmembrane peptide: toward the right tilt angle? J Am Chem Soc 129:15174–15181

    Article  PubMed  Google Scholar 

  • Separovic F, Pax R, Cornell B (1993) NMR order parameter analysis of a peptide plane aligned in a lyotropic liquid crystal. Mol Phys 78:357–369

    Article  CAS  Google Scholar 

  • Smith R, Separovic F, Milne TJ, Whittaker A, Bennett FM, Cornell BA, Makriyannis A (1994) Structure and orientation of the pore-forming peptide melittin, in lipid bilayers. J Mol Biol 241:456–466

    Article  PubMed  CAS  Google Scholar 

  • Strandberg E, Özdirekcan S, Rijkers DTS, van der Wel PCA, Koeppe RE II, Liskamp RM, Killian JA (2004) Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid state NMR. Biophys J 86:3709–3721

    Article  PubMed  CAS  Google Scholar 

  • Strandberg E, Tremouilhac P, Wadhwani P, Ulrich AS (2009a) Synergistic transmembrane insertion of the heterodimeric PGLa/magainin 2 complex studied by solid-state NMR. Biochim Biophys Acta 1788:1667–1679

    Article  PubMed  CAS  Google Scholar 

  • Strandberg E, Esteban-Martín S, Salgado J, Ulrich AS (2009b) Orientation and dynamics of peptides in membranes calculated from 2H-NMR data. Biophys J 96:3223–3232

    Article  PubMed  CAS  Google Scholar 

  • Strandberg E, Esteban-Martín S, Ulrich AS, Salgado J (2012) Hydrophobic mismatch of mobile transmembrane helices: Merging theory and experiments, Biochim Biophys Acta 1818:1242–1249

    Google Scholar 

  • van der Wel PCA, Strandberg E, Killian JA, Koeppe RE II (2002) Geometry and intrinsic tilt of a tryptophan-anchored transmembrane α-helix determined by 2H NMR. Biophys J 83:1479–1488

    Article  PubMed  Google Scholar 

  • Vostrikov VV, Grant CV, Daily AE, Opella SJ, Koeppe RE II (2008) Comparison of “polarization inversion with spin exchange at magic angle” and “geometric analysis of labeled alanines” methods for transmembrane helix alignment. J Am Chem Soc 130:12584–12585

    Article  PubMed  CAS  Google Scholar 

  • Vostrikov VV, Daily AE, Greathouse DV, Koeppe RE II (2010) Charged or aromatic anchor residue dependence of transmembrane peptide tilt. J Biol Chem 285:31723–31730

    Article  PubMed  CAS  Google Scholar 

  • Walther TH, Grage SL, Roth N, Ulrich AS (2010) Membrane alignment of the pore-forming component TatAd of the twin-arginine translocase from Bacillus subtilis resolved by solid-state NMR spectroscopy. J Am Chem Soc 132:15945–15956

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Denny J, Tian C, Kim S, Mo Y, Kovacs F, Song Z, Nishimura K, Gan Z, Fu R, Quine JR, Cross TA (2000) Imaging membrane protein helical wheels. J Magn Reson 144:162–167

    Article  PubMed  CAS  Google Scholar 

  • Wu CH, Ramamoorthy A, Opella SJ (1994) High-resolution heteronuclear dipolar solid-state NMR-spectroscopy. J Magn Reson A 109:270–272

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the DFG Center for Functional Nanostructures CFN (E1.2) and the Spanish MICINN BFU2010-19118/BMC, financed in part by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne S. Ulrich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

249_2012_801_MOESM1_ESM.pdb

Structures representing the helix geometry used for the prediction of the solid-state NMR parameters are provided as pdb files in the Supplementary Materials. (PDB 10 kb)

(PDB 10 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grage, S.L., Strandberg, E., Wadhwani, P. et al. Comparative analysis of the orientation of transmembrane peptides using solid-state 2H- and 15N-NMR: mobility matters. Eur Biophys J 41, 475–482 (2012). https://doi.org/10.1007/s00249-012-0801-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0801-0

Keywords

Navigation