Skip to main content

Advertisement

Log in

Genome-wide association study identifies loci associated with milk leukocyte phenotypes following experimental challenge with Streptococcus uberis

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Mastitis is a detrimental disease in the dairy industry that decreases milk quality and costs upwards of $2 billion annually. Often, mastitis results from bacteria entering the gland through the teat opening. Streptococcus uberis is responsible for a high percentage of subclinical and clinical mastitis. Following an intramammary experimental challenge with S. uberis on Holstein cows (n = 40), milk samples were collected and somatic cell counts (SCC) were determined by the Dairy Herd Improvement Association Laboratory. Traditional genome-wide association studies (GWAS) have utilized test day SCC or SCC lactation averages to identify loci of interest. Our approach utilizes SCC collected following a S. uberis experimental challenge to generate three novel phenotypes: (1) area under the curve (AUC) of SCC for 0–7 days and (2) 0–28 days post-challenge; and (3) when SCC returned to below 200,000 cells/mL post-challenge (< 21 days, 21–28 days, or > 28 days). Polymorphisms were identified using Illumina’s BovineSNP50 v2 DNA BeadChip. Associations were tested using Plink software and identified 16 significant (p < 1.0 × 10−4) single-nucleotide polymorphisms (SNPs) across the phenotypes. Most significant SNPs were in genes linked to cell signaling, migration, and apoptosis. Several have been recognized in relation to infectious processes (ATF7, SGK1, and PACRG), but others less so (TRIO, GLRA1, CELSR2, TIAM2, CPE). Further investigation of these genes and their roles in inflammation (e.g., SCC) can provide potential targets that influence resolution of mammary gland infection. Likewise, further investigation of the identified SNP with mastitis and other disease phenotypes can provide greater insight to the potential of these SNP as genetic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alter A, Fava VM, Huong NT, Singh M, Orlova M, Van Thuc N et al (2013) Linkage disequilibrium and age-at-diagnosis are critical for replicating genetic associations across ethnic groups in leprosy. Hum Genet 132:107–116

    Article  PubMed  Google Scholar 

  • Baeuerle PA, Henkel T (1994) Function and activation of NF-kappaB in the immune system. Annu Rev Immunol 12:141–179

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DD, Paape MJ, Goff JP, Kimura K, Lippolis JD, Hope JC (2004) Innate immune respons to intramammary infection with Serratia marcescens and Streptococcus uberis. Vet Res 35:681–700

    Article  PubMed  CAS  Google Scholar 

  • Beall SA, Boekelheide K, Johnson KJ (2005) Hybrid GPCR/cadherin (Celsr) proteins in rat testis are expressed with cell type specificity and exhibit differential sertoli cell—germ cell adhesion activity. J Androl 26:529–538

    Article  PubMed  CAS  Google Scholar 

  • Boussaha M, Esquerre D, Barbieri J, Djari A, Pinton A, Letaief R et al (2015) Genome-wide study of structural variants in bovine Holstein, Montbeliarde and Normande dairy breeds. PLoS One 10(8):e0135931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradley AJ, Leach KA, Breen JE, Green LE, Green MJ (2007) Survey of the incidence and aetiology of mastitis on dairy farms in England and Wales. Vet Rec 160:253–258

    Article  PubMed  CAS  Google Scholar 

  • Bragina EY, Trys ES, Rudko AA, Ivanisenko VA, Freidin MB (2016) Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks. Infect Genet Evol 46:118–123

    Article  PubMed  CAS  Google Scholar 

  • Chen JS, Su IJ, Leu YW, Young KC, Sun HS (2012) Expression of T-cell lymphoma invasion and metastasis 2 (TIAM2) promotes proliferation and invasion of liver cancer. Int J Cancer 130:1302–1313

    Article  PubMed  CAS  Google Scholar 

  • Chiu CY, Leng S, Martin KA, Kim E, Gorman S, Duhl DM (1999) Cloning and characterization of T-cell lymphoma invasion and metastasis 2 (TIAM2), a novel guanine nucleotide exchange factor related to TIAM1. Genomics 61:66–73

    Article  PubMed  CAS  Google Scholar 

  • Cole JB, VanRaden PM, O’Connell JR, Van Tassell CP, Sonstegard TS, Schnabel RD et al (2009) Distribution and location of genetic effects for dairy traits. J Dairy Sci 92:2931–2946

    Article  PubMed  CAS  Google Scholar 

  • Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ Jr, Crooker BA et al (2011) Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics 12:408. https://doi.org/10.1186/1471-2164-12-408

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 9:899–909

    Article  PubMed  CAS  Google Scholar 

  • Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D'Eustachio P (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477

    Article  PubMed  CAS  Google Scholar 

  • de Roos APW, Hayes BJ, Spelman RJ, Goddard ME (2008) Linkage disequilibrium and persistence of phase in Holstein–Friesian, Jersey and Angus cattle. Genetics 179:1503–1512

    Article  PubMed  PubMed Central  Google Scholar 

  • Dohoo IR, Smith J, Andersen S, Kelton DF, Godden S (2011) Diagnosing intramammary infections: evaluation of definitions based on a single milk sample. J Dairy Sci 94:250–261

    Article  PubMed  CAS  Google Scholar 

  • Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P (2018) The reactome pathway knowledgebase. Nucleic Acids Res 46:D649–D655

    Article  PubMed  Google Scholar 

  • Fricker LD (1988) Carboxypeptidase E. Annu Rev Physiol 50:309–321

    Article  PubMed  CAS  Google Scholar 

  • Gerard NP, Gerard C (1991) The chemotactic receptor for human C5a anaphylatoxin. Nature 349:614–617

    Article  PubMed  CAS  Google Scholar 

  • Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat Genet 37:549–554

    Article  PubMed  CAS  Google Scholar 

  • Haile-Mariam M, Bowman PJ, Goddard ME (2003) Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle. Livest Prod Sci 80:189–200

    Article  Google Scholar 

  • Han X, Tachado SD, Koziel H, Boisvert WA (2012) Leu128 (L128) and Val247(V247) of CXCR1 are critical amino acid residues for g protein coupling and receptor activation. PLoS One 7:e42765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jayarao BM, Oliver SP (1994) Polymerase chain reaction-based DNA fingerprinting for identification of Streptococcus and Enterococcus species isolated from bovine milk. J Food Prot 57:240–245

    Article  CAS  Google Scholar 

  • Jayarao BM, Oliver SP, Matthews KR, King SH (1991) Comparative evaluation of Vitek Gram-positive identification system and API Rapid Strep system for identification of Streptococcus species of bovine origin. Vet Micro 26:301–308

    Article  CAS  Google Scholar 

  • Jayarao BM, Gillespie BE, Oliver SP (1996) Application of randomly amplified polymorphic DNA fingerprinting for species identification of bacteria isolated from bovine milk. J Food Prot 59:615–620

    Article  CAS  Google Scholar 

  • Jayarao BM, Gillespie BE, Lewis MJ, Dowlen HH, Oliver SP (1999) Epidemiology of Streptococcus uberis intramammary infections in a dairy herd. J Vet Med, Series B 46:433–442

    Article  CAS  Google Scholar 

  • Kennedy BW, Sethar MS, Moxley JE, Downey BR (1982) Heritability of somatic cell count and its relationship with milk yield and composition in Holsteins. J Dairy Sci 65:843–847

    Article  Google Scholar 

  • Lang F, Shumilina E (2013) Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J 27:3–12

    Article  PubMed  CAS  Google Scholar 

  • Lang F, Artunc F, Vallon V (2009) The physiological impact of the serum- and glucocorticoid-inducible kinase SGK1. Curr Opin Nephrol Hypertens 18:439–448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lang F, Strutz-Seebohm N, Seebohm G, Lang UE (2010) Significance of SGK1 in the regulation of neuronal function. J Physiol 588:3349–3354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lawless N, Reinhardt TA, Bryan K, Baker M, Pesch B, Zimmerman D et al (2014) MicroRNA regulation of bovine monocyte inflammatory and metabolic networks in an in vivo infection model. G3 (Bethesda) 4:957–971

    Article  PubMed Central  CAS  Google Scholar 

  • Lee TK, Murthy SR, Cawley NX, Dhanvantari S, Hewitt SM, Lou H et al (2011) An N-terminal truncated carboxypeptidase E splice isoform induces tumor growth and is a biomarker for predicting future metastasis in human cancers. J Clin Invest 121:880–892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manly KF (2005) Reliability of statistical associations between genes and disease. Immunogenetics 57:549–558

    Article  PubMed  Google Scholar 

  • Matsusaka T, Fujikawa K, Nishio Y, Mukaida N, Matsushima K, Kishimoto T, Akira S (1993) Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines. interleukin 6 and interleukin 8 PNAS 90:10193–10197

    PubMed  CAS  Google Scholar 

  • Meredith BK, Kearney FJ, Finlay EK, Bradley DG, Fahey AG, Berry DP, Lynn DJ (2012) Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genet 13:1–11

    Article  CAS  Google Scholar 

  • Østerås O, Sølverød L, Reksen O (2006) Milk culture results in a large Norwegian survey—effects of season, parity, days in milk, resistance, and clustering. J Dairy Sci 89:1010–1023

    Article  PubMed  Google Scholar 

  • Paape MJ, Bannerman DD, Zhao X, Lee J-W (2003) The bovine neutrophil: structure and function in blood and milk. Vet Res 34:597–627

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Cabal MA, Charfeddine N (2013) Genetic relationship between clinical mastitis and several traits of interest in Spanish Holstein dairy cattle. Interbull Bulletin 47:77–81

    Google Scholar 

  • Petrovski KR, Williamson NB, Lopez-Villalobos N, Parkinson TJ, Tucker IG (2011) Culture results from milk samples submitted to veterinary diagnostic laboratories from August 2003 to December 2006 in New Zealand. N Z Vet J 59:317–322

    Article  PubMed  CAS  Google Scholar 

  • Piepers S, De Meulemeester L, de Kruif A, Opsomer G, Barkema HW, De Vliegher S (2007) Prevalence and distribution of mastitis pathogens in subclinically infected dairy cows in Flanders, Belgium. J Dairy Res 74:478–483

    Article  PubMed  CAS  Google Scholar 

  • Pighetti GM et al. (2017) Vaccination with recombinant Streptococcus uberis Adhesion Molecule alters immune response to experimental challenge. Int J Vet Dairy Sci. Published online: 05/15/2017

  • Pryce JE, Bolormaa S, Chamberlain AJ, Bowman PJ, Savin K, Goddard ME, Hayes BJ (2010) A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes. J Dairy Sci 93:3331–3345

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Cherny SS, Sham PC (2003) Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19(1):149–150

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pyörälä S (2008) Mastitis in post-partum dairy cows. Reprod Domest Anim 43:252–259

    Article  PubMed  Google Scholar 

  • Raman D, Sai J, Neel NF, Chew CS, Richmond A (2010) LIM and SH3 protein-1 modulates CXCR2-mediated cell migration. PLoS One 5:e10050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rambeaud M, Pighetti G (2007) Differential calcium signaling in dairy cows with specific CXCR1 genotypes potentially related to interleukin-8 receptor functionality. Immunogenetics 59:53–58

    Article  PubMed  CAS  Google Scholar 

  • Rambeaud M, Almeida RA, Pighetti GM, Oliver SP (2003) Dynamics of leukocytes and cytokines during experimentally induced Streptococcus uberis mastitis. Vet Immunol Immunopathol 96:193–205

    Article  PubMed  CAS  Google Scholar 

  • Rambeaud M, Clift R, Pighetti GM (2006) Association of a bovine CXCR2 gene polymorphism with neutrophil survival and killing ability. Vet Immunol Immunopathol 111:231–238

    Article  PubMed  CAS  Google Scholar 

  • Richardson RM, Marjoram RJ, Barak LS, Snyderman R (2003) Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J Immunol 170:2904–2911

    Article  PubMed  CAS  Google Scholar 

  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rooney C, White G, Nazgiewicz A, Woodcock SA, Anderson KI, Ballestrem C, Malliri A (2010) The Rac activator STEF (Tiam2) regulates cell migration by microtubule-mediated focal adhesion disassembly. EMBO Rep 11:292–298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rupp R, Boichard D (2003) Genetics of resistance to mastitis in dairy cattle. Vet Res 34:671–688

    Article  PubMed  Google Scholar 

  • Ryman VE, Packiriswamy N, Sordillo LM (2016) Apoptosis of endothelial cells by 13-HPODE contributes to impairment of endothelial barrier integrity. Med Inflammation 2016:13. https://doi.org/10.1155/2016/9867138

  • Schepers AJ, Lam TJ, Schukken YH, Wilmink JB, Hanekamp WJ (1997) Estimation of variance components for somatic cell counts to determine thresholds for uninfected quarters. J Dairy Sci 80:1833–1840

    Article  PubMed  CAS  Google Scholar 

  • Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DGE, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM (2011) Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol 144:270–289

    Article  PubMed  Google Scholar 

  • Seipel K, O’Brien SP, Iannotti E, Medley QG, Streuli M (2001) Tara, a novel F-actin binding protein, associates with the Trio guanine nucleotide exchange factor and regulates actin cytoskeletal organization. J Cell Sci 114:389–399

    PubMed  CAS  Google Scholar 

  • Shi Y (2017) The spliceosome: a protein-directed metalloribozyme. J Mol Biol 429:2640–2653

    Article  PubMed  CAS  Google Scholar 

  • Shima Y, Kawaguchi SY, Kosaka K, Nakayama M, Hoshino M, Nabeshima Y, Hirano T, Uemura T (2007) Opposing roles in neurite growth control by two seven-pass transmembrane cadherins. Nat Neurosci 10:963–969

    Article  PubMed  CAS  Google Scholar 

  • Sladek Z, Rysanek D, Ryznarova H, Faldyna M (2006) The role of neutrophil apoptosis during experimentally induced Streptococcus uberis mastitis. Vet Med(Praha) 51:437–447

    Article  CAS  Google Scholar 

  • Slama P, Sladek Z, Rysanek D, Langrova T (2009) Effect of Staphylococcus aureus and Streptococcus uberis on apoptosis of bovine mammary gland lymphocytes. Res Vet Sci 87:233–238

    Article  PubMed  CAS  Google Scholar 

  • Spencer CCA, Su Z, Donnelly P, Marchini J (2009) Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. PLoS Genet 5:e1000477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spittler A et al (1999) Immunomodulatory effects of glycine on LPS-treated monocytes: reduced TNF-α production and accelerated IL-10 expression. FASEB J 13:563–571

    Article  PubMed  CAS  Google Scholar 

  • Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33

    Article  PubMed  CAS  Google Scholar 

  • Sternberg EM (2006) Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat Rev Immunol 6:318–328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tassi R, McNeilly TN, Fitzpatrick JL, Fontaine MC, Reddick D, Ramage C et al (2013) Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus uberis in dairy cattle. J Dairy Sci 96(8):5129–5145

    Article  PubMed  CAS  Google Scholar 

  • Van den Eynden J, Ali SS, Horwood N, Carmans S, Brone B, Hellings N et al (2009) Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci 2:9

    PubMed  Google Scholar 

  • van Rijssel J, van Buul JD (2012) The many faces of the guanine-nucelotide exchange factor trio. Cell Adhes Migr 6:482–487

    Article  Google Scholar 

  • Verbeke J, Piepers S, Supré K, De Vliegher S (2014) Pathogen-specific incidence rate of clinical mastitis in Flemish dairy herds, severity, and association with herd hygiene. J Dairy Sci 97:6926–6934

    Article  PubMed  CAS  Google Scholar 

  • Wedlock DN, Buddle BM, Williamson J, Lacy-Hulbert SJ, Turner SA, Subharat S, Heiser A (2014) Dairy cows produce cytokine and cytotoxic T cell responses following vaccination with an antigenic fraction from Streptococcus uberis. Vet Immunol Immunopathol 160(1–2):51–60

    Article  PubMed  CAS  Google Scholar 

  • Weller JI, Saran A, Zeliger Y (1992) Genetic and environmental relationships among somatic cell count, bacterial infection, and clinical mastitis. J Dairy Sci 75:2532–2540

    Article  PubMed  CAS  Google Scholar 

  • Wheeler M, Stachlewitz RF, Yamashina S, Ikejima K, Morrow AL, Thurman RG (2000) Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. FASEB J 14:476–484

    Article  PubMed  CAS  Google Scholar 

  • Wiggans GR, Shook GE (1987) A lactation measure of somatic cell count. J Dairy Sci 70:2666–2672

    Article  PubMed  CAS  Google Scholar 

  • Wilson DJ, Gonzalez RN, Das HH (1997) Bovine mastitis pathogens in New York and Pennsylvania: prevalence and effects on somatic cell count and milk production. J Dairy Sci 80:2592–2598

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, Regev A, Kuchroo V (2013) Induction of pathogenic Th17 cells by inducible salt sensing kinase SGK1. Nature 496(7446):513–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida K, Maekawa T, Zhu Y, Renard-Guillet C, Chatton B, Inoue K, Uchiyama T, Ishibashi KI, Yamada T, Ohno N, Shirahige K, Okada-Hatakeyama M, Ishii S (2015) The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat Immunol 16:1034–1043

    Article  PubMed  CAS  Google Scholar 

  • Zadoks RN (2007) Sources and epidemiology of Streptococcus uberis, with special emphasis on mastitis in dairy cattle. Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2:15

Download references

Acknowledgements

The authors would like to thank Dr. Arnold Saxton of the department of Animal Science at the University of Tennessee for his assistance in converting the data format. A special thank you to the staff at the East Tennessee Research and Education Center Little River Unit for their aid in animal care and milking.

Funding

The challenge portion of this study was supported by USDA-NIFA-AFRI (2011-67015-30168). The remaining portions of the study were supported by UTAgResearch and the AgInnovation fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina M. Pighetti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siebert, L., Staton, M.E., Headrick, S. et al. Genome-wide association study identifies loci associated with milk leukocyte phenotypes following experimental challenge with Streptococcus uberis. Immunogenetics 70, 553–562 (2018). https://doi.org/10.1007/s00251-018-1065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-018-1065-3

Keywords

Navigation