Skip to main content
Log in

Biotechnological advantages of laboratory-scale solid-state fermentation with fungi

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Despite the increasing number of publications dealing with solid-state (substrate) fermentation (SSF) it is very difficult to draw general conclusion from the data presented. This is due to the lack of proper standardisation that would allow objective comparison with other processes. Research work has so far focused on the general applicability of SSF for the production of enzymes, metabolites and spores, in that many different solid substrates (agricultural waste) have been combined with many different fungi and the productivity of each fermentation reported. On a gram bench-scale SSF appears to be superior to submerged fermentation technology (SmF) in several aspects. However, SSF up-scaling, necessary for use on an industrial scale, raises severe engineering problems due to the build-up of temperature, pH, O2, substrate and moisture gradients. Hence, most published reviews also focus on progress towards industrial engineering. The role of the physiological and genetic properties of the microorganisms used during growth on solid substrates compared with aqueous solutions has so far been all but neglected, despite the fact that it may be the microbiology that makes SSF advantageous against the SmF biotechnology. This review will focus on research work allowing comparison of the specific biological particulars of enzyme, metabolite and/or spore production in SSF and in SmF. In these respects, SSF appears to possess several biotechnological advantages, though at present on a laboratory scale only, such as higher fermentation productivity, higher end-concentration of products, higher product stability, lower catabolic repression, cultivation of microorganisms specialized for water-insoluble substrates or mixed cultivation of various fungi, and last but not least, lower demand on sterility due to the low water activity used in SSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuna-Arguelles ME, Gutierrez-Rojas M, Viniegra-González G, Favela-Torres E (1995) Production and properties of three pectinolytic activities produced by Aspergillus niger in submerged and solid-state fermentation. Appl Microbiol Biotechnol 43:808–814

    Article  CAS  PubMed  Google Scholar 

  • Adams TT, Eiteman MA, Hanel BM (2002) Solid state fermentation of broiler litter for production of biocontrol agents. Bioresour Technol 82:33–41

    Article  CAS  PubMed  Google Scholar 

  • Aguilar CN, Augur C, Favela-Torres E, Viniegra-González G (2001) Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid. J Ind Microbiol Biotechnol 26:296–302

    Google Scholar 

  • Alberto AA de, Pastore GM, Berger RG (2002) Production of coconut aroma by fungi in solid-state fermentation. Appl Biochem Biotechnol 98–100:747–751

    Google Scholar 

  • Arenskötter M, Baumeister D, Bröker D, Hölker U, Ibrahim EMA, Lenz J, Karsten K, Steinbüchel A (2003) Entwicklung eines biotechnologischen Verfahrens zur stofflichen Wiederverwertung kautschukhaltiger Rest- und Abfallstoffe. In: Heiden S, Erb R (eds) Transkript Sonderheft, Nachhaltige Biokatalyse. DBU, Osnabruck, pp 28–32

  • Ashokkumar B, Gunasekaran P (2002) β-Fructofuranosidase production by 2-deoxyglucose resistant mutants of Aspergillus niger in submerged and solid-state fermentation. Indian J Exp Biol 40:1032–1037

    CAS  PubMed  Google Scholar 

  • Ashokkumar B, Kayalvizhi N, Gunasekaran P (2001) Optimization of media for β-fructofuranosidase production by Aspergillus niger in submerged and solid state fermentation. Process Biochem 37:331–338

    Article  CAS  Google Scholar 

  • Asther M, Haon M, Roussos S, Record E, Delattre M, Lesage-Meessen L, Labat M, Asther M (2002) Feruloyl esterase from Aspergillus niger: a comparison of the production in solid state and submerged fermentation. Process Biochem 38:685–691

    Article  CAS  Google Scholar 

  • Babu KR, Satyanarayana T (1996) Production of bacterial enzymes by solid state fermentation. J Sci Ind Res 55:464–467

    CAS  Google Scholar 

  • Bakri Y, Jacques P, Thonart P (2003) Xylanase production by Penicillium caescens 10–10c in solid-state fermentation. Appl Biochem Biotechnol 108:737–748

    Article  Google Scholar 

  • Balakrishnan K, Pandey A (1996) Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res 55:365–372

    CAS  Google Scholar 

  • Baldrian P, Gabriel J (2002) Variability of laccase activity in the white-rot basidiomycete Pleurotus ostreatus. Folia Microbiol 47:385–390

    CAS  Google Scholar 

  • Barrios-Gonzalez J, Mejía A (1996) Production of secondary metabolites by solid-state fermentation. Biotechnol Annu Rev 2:85–88

    CAS  PubMed  Google Scholar 

  • Barrios-Gonzalez J, Tomasini A (1996) Production of aflatoxines in solid state fermentation. J Sci Ind Res 55:424–430

    CAS  Google Scholar 

  • Barrios-Gonzalez J, Castillo TE, Mejia A (1993) Development of high penicillin producing strains for solid state fermentation. Biotechnol Adv 11:525–537

    Google Scholar 

  • Becerra M, Gonzalez Siso MI (1996) Yeast β-galactosidase in solid-state fermentations. Enz Microb Technol 19:39–44

    Article  CAS  Google Scholar 

  • Beg QK, Bhushan B, Kapoor M, Hoondal GS (2000) Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11–3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol 27:459–466

    Article  CAS  PubMed  Google Scholar 

  • Benjamin S, Pandey A (1997) Coconut cake—a potent substrate for the production of Lipase by Candida rugosa in solid-state fermentation. Acta Biotechnol 17:241–251

    CAS  Google Scholar 

  • Biesebeke R te, Ruijter G, Rahardjo YSP, Hoogschagen MJ, Heerikhuisen M, Levin A, van Driel KGA, Schutyser MAI, Dijksterhuis J, Zhu Y, Weber FJ, de Vos WM, van den Hondel KAMJJ, Rinzema A, Punt PJ (2002) Aspergillus oryzae in solid state fermentation. FEMS Yeast Res 2:245–248

    Article  PubMed  Google Scholar 

  • Blandino A, Iqbalsyah T, Pandiella SS, Cantero D, Webb C (2002) Polygalacturonase production by Aspergillus awamori on wheat in solid-state fermentation. Appl Microbiol Biotechnol 58:164–169

    CAS  PubMed  Google Scholar 

  • Bockelmann W, Protius S, Lick S, Heller KJ (1999) Sporulation of Penicillium camemberti in submerged batch culture. System Appl Microbiol 22:479–485

    CAS  Google Scholar 

  • Carlile MJ, Watkinson SC (1994) The Fungi. Academic Press, San Diego, Calif

  • Castillo MR, Gutierrez-Correa M, Linden JC, Tengerdy RP (1994) Mixed culture solid substrate fermentation for cellulolytic enzyme production. Biotechnol Let 16:967–972

    CAS  Google Scholar 

  • Cen P, Xia L (1999) Production of cellulase by solid-state fermentation. Adv Biochem Eng 65:69–92

    CAS  Google Scholar 

  • Christen P, Bramorski A, Revah S, Soccol CR (2000) Characterization of volatile compounds produced by Rhizopus strains grown on agro-industrial solid wastes. Bioresour Technol 71:211–215

    Article  CAS  Google Scholar 

  • Dartora AB, Bertolin TE, Bilibio D, Silveira MM, Costa JAV (2002) Evaluation of filamentous fungi and inducers for the production of endo-polygalacturonase by solid state fermentation. Z Naturforsch 57:666–670

    CAS  Google Scholar 

  • Deschamps F, Huet MC (1985) Xylanase production in solid-state fermentation: a study of its properties. Appl Microbiol Biotechnol 22:177–180

    CAS  Google Scholar 

  • Deshpande MV (1999) Mycopesticide production by fermentation: potential and challenges. CRC Microbiol 25:229–243

    CAS  Google Scholar 

  • Dey S, Agarwal SO (1999) Characterization of a theromostable alpha amylase from a thermophilic Streptomyces megasporus strain SD12. Indian J Biochem Biophys 36:150–157

    CAS  PubMed  Google Scholar 

  • Díaz-Godínez G, Soriano-Santos J, Augur C, Viniegra-González G (2001) Exopectinases produced by Aspergillus niger in solid-state and submerged fermentation: a comparative study. J Ind Microbiol Biotechnol 26:271–275

    Google Scholar 

  • Elibol M, Muvituna F (1997) Characteristics of antibiotic production in a multiphase system. Process Biochem 35:85–90

    Google Scholar 

  • Elinbaum S, Ferreyra H, Ellenrieder G, Cuevas C (2002) Production of Aspergillus terreus α-l-rhamnosidase by solid state fermentation. Lett Appl Microbiol 34:67–71

    Article  CAS  PubMed  Google Scholar 

  • Ellaiah P, Srinivasulu B, Adinarayana K (2003) Optimisation studies on neomycin production by a mutant strain of Streptomyces marinensis in solid state fermentation. Process Biochem (in press) DOI 10.1016/s0032-9592(02)00059-6

  • Fan L, Pandey A, Mohan R, Soccol CR (2000) Use of various coffee industry residues for the cultivation of Pleurotus ostreatus in solid state fermentation. Acta Biotechnol 20:41–52

    Google Scholar 

  • Favela-Torres E, Cordova-Lopez J, Garcia-Rivero M, Gutierrez-Rojas M (1998) Kinetics of growth of Aspergillus niger during submerged, agar surface and solid state fermentations. Process Biochem 33:103–107

    Article  CAS  Google Scholar 

  • Fenice M, Sermanni GG, Federici F, D‘Annibale A (2003) Submerged and solid-state production of laccase and Mn-peroxidase by Panus tigrinus on olive mill wastewater-based media. J Biotechnol 100:77–85

    Article  CAS  PubMed  Google Scholar 

  • Filer K (2001) The newest old way to make enzymes. Feed Mix 9:27–29

    Google Scholar 

  • Frandberg E, Peterson C, Lundgren LN, Schnurer J (2000) Streptomyces halstedii K122 produces antifungal compounds bafilomycin B1 and C1. Can J Microbiol 46:753–758

    Article  CAS  PubMed  Google Scholar 

  • Frey S, Magan N (2001) Production of the fungal biocontrol agent Ulocladium atrum by submerged fermentation: accumulation of endogenous reserves and shelf-life studies. Appl Microbiol Biotechnol 56:372–377

    Article  CAS  PubMed  Google Scholar 

  • Fu S-G, Yoon Y, Bazemore R (2002) Aroma-active compounds in fermented bamboo shoots. J Agric Food Chem 50:549–554

    Google Scholar 

  • Fujian X, Hongzhang C, Zuohu L (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour Technol 80:149–151

    Article  CAS  PubMed  Google Scholar 

  • Gautam P, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Microbial production of extra-cellular phytase using polystyrene as inert solid support. Bioresour Technol 83:229–233

    Article  CAS  PubMed  Google Scholar 

  • Germano S, Pandey A, Osaku CA, Rocha SN, Soccol CR (2003) Characterization and stability of proteases from Penicillium sp produced by solid-state fermentation. Enzyme Microb Technol 32:246–251

    Article  CAS  Google Scholar 

  • Gupte A, Madamwar D (1997) Solid state fermentation of lignocellulosic waste for cellulase and β-glucosidase production by cocultivation of Aspergillus ellipticus and Aspergillus fumigatus. Biotechnol Prog 13:166–169

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1997) Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol Lett 19:665–667

    Article  CAS  Google Scholar 

  • Gutierrez-Correa M, Tengerdy RP (1998) Xylanase production by fungal mixed culture solid substrate fermentation on sugar cane bagasse. Biotechnol Lett 20:45–47

    Google Scholar 

  • Gutierrez-Correa M, Portal L, Moreno P, Tengerdy RP (1999) Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresour Technol 68:173–178

    Article  CAS  Google Scholar 

  • Han B-Z, Rombouts FM, Nout MJR (2001) A Chinese fermented soybean food. Int J Food Microbiol 65:1–10

    Google Scholar 

  • Harris JP, Mantle PG (2001) Biosynthesis of ochratoxins by Aspergillus ochraceus. Phytochemistry 58:709–716

    Article  CAS  PubMed  Google Scholar 

  • Hernández MRT, Lonsane BK, Raimbault M, Roussos S (1993) Spectra of ergot alkaloids produced by Claviceps purpurea 1029c in solid-state fermentation system: influence of the composition of liquid medium used for impregnation sugar-cane pith bagasse. Process Biochem 28:23–27

    Google Scholar 

  • Hölker U (2000) Bioreactor for fermenting solids. Patent PCT WO 01/19954

  • Hölker U (2002) Bioreactor having at least two reaction chambers. Patent WO 02/100999 A3

  • Hölker U (2003a) Kultivierungsverfahren für Mikroorganismen und Bioreaktor. Patent PCT/EPO3/01663

  • Hölker U (2003b) Fermentation auf festen Substraten. BioTec 3–4:32–33

  • Hölker U, Höfer M (2002) Solid substrate fermentation of lignite by the coal solubilizing mould Trichoderma atroviride in a new type of bioreactor. Biotechnol Lett 24:1643–1645

    Article  Google Scholar 

  • Hongzhang C, Fujian X, Zhonghou T, Zuohu L (2002) A novel industrial-level reactor with two dynamic changes of air for solid-state fermentation. J Biosci Bioeng 93:211–214

    Article  Google Scholar 

  • Hsu FL, Wang PM, Lu SY, Wu WT (2002) A combined solid-state and submerged cultivation integrated with adsorptive product extraction for production of Monascus red pigments. Bioprocess Biosyst Eng 25:165–168

    Article  CAS  PubMed  Google Scholar 

  • Ishida H, Hata Y, Kawato A, Abe Y, Suginami K, Imayasu S (2000) Identification of functional elements that regulate the glucoamylase-encoding gene (glab) expressed in solid-state culture of Aspergillus oryzae. Curr Genet 37:373–379

    CAS  PubMed  Google Scholar 

  • Jain A (1995) Production of xylanase by thermophilic Melanocarpus albomyces IIS-68. Process Biochem 30:705–709

    Article  Google Scholar 

  • Jermini MFG, Demain AL (1989) Solid state fermentation for cephalosporin production by Streptomyces clavuligerus and Cephalosporin acremonium. Experientia 45:1061–1065

    CAS  PubMed  Google Scholar 

  • Johns MR, Stuart DM (1991) Production of pigments by Monascus purpureus in solid culture. J Ind Microbiol 8:23–28

    CAS  Google Scholar 

  • Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170

    CAS  Google Scholar 

  • Kapoor M, Kuhad RC (2002) Improved polygalacturonase production from Bacillus sp. MG-cp-2 under submerged (SmF) and solid state (SSF) fermentation. Lett Appl Microbiol 34:317–322

    Article  CAS  PubMed  Google Scholar 

  • Kar B, Banerjee R (2000) Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions. J Ind Microbiol Biotechnol 25:29–38

    Google Scholar 

  • Kar B, Banerjee R, Bhattacharyya BC (1999) Microbial production of gallic acid by modified solid state fermentation. J Ind Microbiol Biotechnol 23:173–177

    Google Scholar 

  • Kashyap DR, Soni SK, Tewari R (2003) Enhanced production of pectinase by Bacillus subtilis using solid state fermentation. Bioresour Technol 88:251–254

    Article  PubMed  Google Scholar 

  • Kelecom A (2002) Secondary metabolites from marine microorganisms. Ann Acad Bras Cienc 74:151–170

    CAS  Google Scholar 

  • Koroleva OV, Gavrilova VP, Stepanova EV, Lebedeva VI, Sverdlova NI, Landesman EO, Yavmetdinov IS, Yaropolov AI (2002) Production of lignin modifying enzymes by co-cultivated white-rot fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima. Enzyme Microb Technol 30:573–580

    Article  CAS  Google Scholar 

  • Kota KP, Sridhar P (1998) Solid state cultivation of Streptomyces clavuligerus for producing cephamycin C. J Sci Ind Res 57:587–590

    CAS  Google Scholar 

  • Krishna C (1999) Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69:231–239

    Article  CAS  Google Scholar 

  • Krishna C, Nokes SE (2001) Predicting vegetative inoculum performance to maximize phytase production in solid-state fermentation using response surface methodology. J Ind Microbiol Biotechnol 26:161–170

    Google Scholar 

  • Krishna PS, Venkateswarlu G, Pandey A, Rao LV (2003) Biosynthesis of rifamycin SV by Amycolatopsis mediterranei MTCC17 in solid cultures. Biotechnol Appl Biochem 37:311–315

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Jain VK, Shanker G, Srivastava A (2003) Utilisation of fruit wastes for citric acid production by solid state fermentation. Process Biochem (in press)

  • Lapadatescu C, Bonnarme P (1999) Production of aryl metabolites in solid-state fermentations of the white-rot fungus Bjerkandera adusta. Biotechnol Lett 21:763–769

    Google Scholar 

  • Larroche C, Gros JB (1989) Strategies for spore production by Penicillium roquefortii using solid state fermentation techniques. Process Biochem 24:97–103

    Google Scholar 

  • Machado CM, Soccol CR, de Oliveira BH, Pandey A (2002) Giberellic acid production by solid-state fermentation in coffee husk. Appl Biochem Biotechnol 102–103:179–191

    Google Scholar 

  • Mahadik ND, Puntambekar US, Bastawde KB, Khire JM, Gokhale DV (2002) Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochem 38:715–721

    Article  CAS  Google Scholar 

  • Maldonado MC, Strasser de Saad AM (1998) Production of pectinesterase and polygalacturonase by Aspergillus niger in submerged and solid state systems. J Ind Microbiol Biotechnol 20:34–38

    PubMed  Google Scholar 

  • Mamo G, Gessesse A (1999) Production of raw-starch digesting amyloglucosidase by Aspergillus sp GP-21 in solid state fermentation. J Ind Microbiol Biotechnol 22:622–626

    Google Scholar 

  • Mandviwala TN, Khire JM (2000) Production of high activity thermostable phytase from thermotolerant Aspergillus niger in solid state fermentation. J Ind Microbiol Biotechnol 24:237–243

    Google Scholar 

  • Martins ES, Silva D, da Silva R, Gomes E (2002) Solid state production of thermostable pectinase from thermophilic Thermoascus aurantiacus. Process Biochem 37:949–954

    Article  CAS  Google Scholar 

  • Massadeh MI, Yusoff WMW, Omar O, Kader J (2001) Synergism of cellulase enzymes in mixed culture solid substrate fermentation. Biotechnol Let 23:1771–1774

    Article  CAS  Google Scholar 

  • Mitchell DA, Krieger N, Stuart DM, Pandey A (2000a) New developments in solid-state fermentation: II. Rational approaches to design, operation and scale-up of bioreactors. Process Biochem 35:1211–1225

    Article  CAS  Google Scholar 

  • Mitchell DA, Berovic M, Krieger N (2000b) Biochemical engineering of solid state bioprocessing. Adv Biochem Eng Biotechnol 68:61–138

    CAS  PubMed  Google Scholar 

  • Mitchell DA, Berovic M, Krieger N (2002) Overview of solid state bioprocessing. Biotechnol Annu Rev 8:183–225

    CAS  PubMed  Google Scholar 

  • Montiel-Gonzalez AM, Fernandez FJ, Viniegra-Gonzalez G, Loera O (2002) Invertase production on solid-state fermentation by Aspergillus niger strains by parasexual recombination. Appl Biochem Biotechnol 102–103:63–70

    Google Scholar 

  • Munoz GA, Agosin E, Cotoras M, San Martin R, Volpe D (1995) Comparison of aerial and submerged spore properties for Trichoderma harzianum. 125:63–70

  • Nandakumar MP, Thakur MS, Raghavaro KSMS, Ghildyal NP (1999) Studies on catabolite repression in solid state fermentation for biosynthesis of fungal amylases. Let Appl Microbiol 29:380–384

    Article  Google Scholar 

  • Nigam P, Singh D (1996a) Processing of agricultural wastes in solid state fermentation for microbial protein production. J Sci Ind Res 55:373–380

    CAS  Google Scholar 

  • Nigam P, Singh D (1996b) Processing of agricultural wastes in solid state fermentation for cellulolytic enzymes production. J Sci Ind Res 55:457–463

    CAS  Google Scholar 

  • Nout MJR, Aidoo KE (2002) Asian fungal fermented food. In: Osiewacz X (ed) The Mycota. Springer, Berlin Heidelberg New York, pp 23–47

  • Ohno A, Ano T, Shoda M (1993) Production of the antifungal peptide, iturin, by Bacillus subtilis NB22 using wheat bran as substrate. J Ferment Bioeng 75:23–27

    Article  CAS  Google Scholar 

  • Ohno A, Ano T, Shoda M (1996) Use of soybean curd residue, okara, for the solid state substrate in the production of a lipopeptide antibiotic, iturin A, by Bacillus subtilis NB 22. Process Biochem 31:801–806

    Article  CAS  Google Scholar 

  • Ooijkaas LP, Weber F, Buitelaar RM, Tramper J, Rinzema A (2000) Defined media and inert supports: their potential as solid-state fermentation production system. Trends Biotechnol 18:356–360

    Article  CAS  PubMed  Google Scholar 

  • Oostra J, Tramper J, Rinzema A (2000) Model-based bioreactor selection for large-scale solid-state cultivation of Coniothyrium minitans spores on oats. Enzyme Microb Technol 27:652–663

    Article  CAS  PubMed  Google Scholar 

  • Pandey A (2003) Solid-state fermentation. Biochem Eng J 13:81–84

    Article  CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Pandey A, Soccol CR, Mitchell D (2000) New developments in solid state fermentation. I Processes and products. Process Biochem 35:1153–1169

    PubMed  Google Scholar 

  • Pandey A, Soccol CR, Rodriguez-Leon JA, Nigam P (2001) Solid-state fermentation in biotechnology: fundamentals and applications. Asiatech, New Delhi

  • Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod 18:37–45

    Article  CAS  Google Scholar 

  • Papagianni M, Nokesa SE, Filer K (1999) Production of phytase by Aspergillus niger in submerged and solid-state fermentation. Process Biochem 35:397–402

    Article  CAS  Google Scholar 

  • Park YS, Kang SW, Lee JS, Hong SI, Kim SW (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58:761–766

    Article  CAS  PubMed  Google Scholar 

  • Pascual S, de Cal A, Magan N, Melgarejo P (2000) Surface hydrophobicity, viability and efficacy in biological control of Penicillium oxalicum spores produced in aerial and submerged culture. J Appl Microbiol 89:847–853

    Article  CAS  PubMed  Google Scholar 

  • Raimbault M (1998) General and microbiological aspects of solid substrate fermentation. Electronic J Biotechnol 1:1–15

    Google Scholar 

  • Ramana Murthy MV, Mohan EVS, Sadhukhan AK (1999) Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 34:269–280

    Article  Google Scholar 

  • Reddy GV, Babu PR, Komaraiah P, Roya KRRM, Kothari IL (2003) Utilization of banana waste for the production of ligninolytic and cellulolytic enzymes by solid substrate fermentation using two Pleurotus species (P. ostreatus and P. sajor-caju). Process Biochem 38:1457–1462

    Article  CAS  Google Scholar 

  • Rehm HJ (1967) Industrielle Mikrobiologie. Springer, Berlin Heidelberg New York

  • Reyes-Moreno C, Romero-Urías C, Milán-Carrillo J, Valdéz-Torres B, Zárate-Márquez E (2000) Optimization of the solid state fermentation process to obtain tempeh from hardened chickpeas (Cicer arietinum L.). Plant Foods Hum Nutr 55:219–228

    Article  CAS  PubMed  Google Scholar 

  • Robinson T, Singh D, Nigam P (2001) Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289

    Article  CAS  PubMed  Google Scholar 

  • Robinson T, Chandran B, Nigam P (2002) Studies on desorption of individual textile dyes and a synthetic dye effluent from dye-adsorbed agricultural residues using solvents. Bioresour Technol 84:299–301

    Article  CAS  PubMed  Google Scholar 

  • Romero-Gomez SJ, Augur C, Viniegra-Gonzalez G (2000) Invertase production by Aspergillus niger in submerged and solid-state fermentation. Biotechnol Lett 22:1255–1258

    Article  CAS  Google Scholar 

  • Sadhukhan AK, Ramana Murthy MV, Ajaya Kumar R, Mohan EVS, Vandana G, Bhar C, Venkateswara Rao K (1999) Optimization of mycophenolic acid production in solid state fermentation using response surface methodology. J Ind Microbiol Biotechnol 22:33–38

    Google Scholar 

  • Sarhy-Bagnon VV, Lozano P, Saucedo-Castaneda G, Roussos S (2000) Production of 6-pentyl-α-pyrone by Trichoderma harzianum in liquid and solid state cultures. Process Biochem 36:103–109

    Article  CAS  Google Scholar 

  • Segeth MP, Bonnefoy A, Bronstrup M, Knauf M, Schummer D, Toti L, Vertesy L, Wetzel-Raynal MC, Wink J, Seibert G (2003) Coniosetin a novel tetramic antibiotic from Coniochaeta ellipsoidea DSM 13856. J Antibiot 56:114–122

    CAS  PubMed  Google Scholar 

  • Selvakumar P, Ashakumary L, Pandey A (1998) Biosynthesis of glucoamylase from Aspergillus niger by solid-state fermentation using tea waste as the basis of solid substrate. Bioresour Technol 65:83–85

    Article  CAS  Google Scholar 

  • Solis-Pereira S, Favela-Torres E, Viniegra-Gonzalez G, Gutierrez-Rojas M (1993) Effect of different carbon sources on the synthesis of pectinases in Aspergillus niger in submerged and solid state fermentation. Appl Microbiol Biotechnol 39:36–41

    CAS  Google Scholar 

  • Souza JVB, Silva ES, Maia MLS, Teixeira MFS (2003) Screening of fungal strains for pectinolytic activity: endopolygalacturonase production by Peacilomyces clavisporus 2A.UMIDA.1. Process Biochem 39:455–458

    Article  CAS  Google Scholar 

  • Stepanova EV, Koroleva OV, Vasilchenko LG, Karapetyan KN, Landesman EO, Yavmetdinov IS, Kozlov YP, Ranbinovich ML (2003) Fungal decomposition of oat straw during liquid and solid-state fermentation. Appl Biochem Microbiol 39:65–74

    Article  CAS  Google Scholar 

  • Su YC, Wang JJ, Lin TT (2003) Production of secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J Ind Microbiol Biotechnol 30:41–46

    CAS  PubMed  Google Scholar 

  • Tarangano VM, Pilosofa AMR (1999) Application of Doehlert designs for water activity, pH, and fermentation time optimization for Aspergillus niger pectinolytic activities production in solid-state and submerged fermentation. Enzyme Microb Technol 25:411–419

    Article  Google Scholar 

  • Tengerdy RP (1996) Cellulase production by solid substrate fermentation. J Sci Ind Res 55:313–316

    CAS  Google Scholar 

  • Tengerdy RP, Szakacs G (2003) Bioconversion of lignocellulose in solid substrate fermentation. Biochem Eng J 13:169–179

    Article  CAS  Google Scholar 

  • Tomasini A, Fajardo C, Barrios-Gonzalez J (1997) Giberellic acid production using different solid state fermentation systems. World J Microbiol Biotechnol 13:203–206

    Google Scholar 

  • Ul-Haq I, Idrees S, Rajoka MI (2002) Production of lipases by Rhizopus oligosporus by solid-state fermentation. Process Biochem 37:637–641

    Article  CAS  Google Scholar 

  • Venkateswarlu G, Murali Krishna PS, Pandey A, Rao LV (2000) Evaluation of Amycolatopsis mediterranei VA18 for production of rifamycin-B. Process Biochem 37:331–338

    Google Scholar 

  • Viniegra-Gonzalez G, Favela-Torres E, Aguilar CN, Romero-Gomez S, Diaz-Godinez G, Augur C (2003) Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem Eng J 13:157–167

    Article  CAS  Google Scholar 

  • Wang HH (1999) Development and/or reclamation of bioresources with solid state fermentation. Proc Natl Sci Counc ROC B 23:45–61

    CAS  Google Scholar 

  • Yang SS, Ling MY (1989) Tetracycline production with sweet potato residues by solid state fermentation. Biotechnol Bioeng 33:1021–1028

    Google Scholar 

  • Yang SS, Wang JY (1996) Morphogenesis, ATP content and oxytetracyline production by Streptomyces rimosus in solid substrate cultivation. J Appl Bacteriol 80:545–550

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Hölker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hölker, U., Höfer, M. & Lenz, J. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64, 175–186 (2004). https://doi.org/10.1007/s00253-003-1504-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1504-3

Keywords

Navigation