Skip to main content
Log in

Synergy between xylanases from glycoside hydrolase family 10 and family 11 and a feruloyl esterase in the release of phenolic acids from cereal arabinoxylan

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The bioconversion of waste residues (by-products) from cereal processing industries requires the cooperation of enzymes able to degrade xylanolytic and cellulosic material. The type A feruloyl esterase from Aspergillus niger, AnFaeA, works synergistically with (1→4)-β-d-xylopyranosidases (xylanases) to release monomeric and dimeric ferulic acid (FA) from cereal cell wall-derived material. The esterase was more effective with a family 11 xylanase from Trichoderma viride in releasing FA and with a family 10 xylanase from Thermoascus aurantiacus in releasing the 5,5′ form of diferulic acid from arabinoxylan (AX) derived from brewers’ spent grain. The converse was found for the release of the phenolic acids from wheat bran-derived AXs. This may be indicative of compositional differences in AXs in cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AX:

Arabinoxylan

BSG:

Brewers’ spent grain

FAE:

Feruloyl esterase

GHIO:

Family 10 xylanase

GH11:

Family 11 xylanase

WB:

wheat bran

References

  • Antoine C, Peyron S, Mabille F, Lapierre C, Bouchet B, Abecassis J, Rouau X (2003) Individual contribution of grain outer layers and their cell wall structure to the mechanical properties of wheat bran. J Agric Food Chem 51:2026–2033

    CAS  PubMed  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    CAS  Google Scholar 

  • Bartolomé B, Faulds CB, Tuohy M, Hazlewood GP, Gilbert HJ, Williamson G (1995) Influence of different xylanases on the activity of ferulic acid esterase on wheat bran. Biotechnol Appl Biochem 22:65–73

    Google Scholar 

  • Bartolomé B, Faulds CB, Kroon PA, Waldron K, Gilbert HJ, Hazlewood GP, Williamson G (1997) An Aspergillus niger esterase (ferulic acid esterase III) and a recombinant Pseudomonas fluorescens subsp. cellulosa esterase (XYLD) release a 5-5’ ferulic dehydrodimer (diferulic acid) from barley and wheat cell walls. Appl Environ Microbiol 63:208–212

    PubMed  PubMed Central  Google Scholar 

  • Beaugrand J, Chambat G, Wong VWK, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O’Donohue M, Chabbert B (2004a) Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr Res 339:2529–2540

    CAS  PubMed  Google Scholar 

  • Beaugrand J, Reis D, Guillon F, Debeire P, Chabbert B (2004b) Xylanase-mediated hydrolysis of wheat bran: evidence for subcellular heterogeneity of cell walls. Int J Plant Sci 165:553–563

    CAS  Google Scholar 

  • Benamrouche S, Crônier D, Debeire P, Chabbert B (2002) A chemical and histological study on the effect of (1→4)-β-endo-xylanase treatment on wheat bran. J Cereal Sci 36:253–260

    CAS  Google Scholar 

  • Besle J-M, Cornu A, Jouany J-P (1994) Roles of structural phenylpropanoids in forage cell wall digestion. J Sci Food Agric 64:171–190

    CAS  Google Scholar 

  • Biely P, MacKenzie CR, Piuls J, Schneider H (1996) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Bio/Technology 4:731–733

    Google Scholar 

  • Biely P, Vrsanska M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    CAS  Google Scholar 

  • Biely P, Mastihubová M, van Zyl WH, Prior BA (2002) Differentiation of feruloyl esterases on synthetic substrates in α-arabinofuranosidase-coupled and ultraviolet-spectrophotometric assays. Anal Biochem 311:68–75

    CAS  PubMed  Google Scholar 

  • Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299

    CAS  Google Scholar 

  • Blum DL, Kataeva IA, Li X-L, Ljungdahl LG (2000) Feruloyl esterase activity of the Clostridium thermocellum cellulosome can be attributed to previously unknown domains of XynY and XynZ. J Bacteriol 182:1346–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brillouet JM, Mercier C (1981) Fractionation of wheat bran carbohydrates. J Sci Food Agric 32:243–251

    CAS  Google Scholar 

  • Chesson A, Gardner PT, Wood TJ (1997) Cell wall porosity and available surface area of wheat straw and wheat grain fractions. J Sci Food Agric 75:289–295

    CAS  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. Royal Society of Chemistry, Cambridge pp 3–12

    Google Scholar 

  • Crepin VF, Faulds CB, Connerton IF (2004) Functional classification of the microbial feruloyl esterases. Appl Microbiol Biotechnol 63:647–652

    CAS  PubMed  Google Scholar 

  • de Vries RP, Poulsen CH, Madrid S, Visser J (1998) aguA, the gene encoding an extracellular α-glucuronidase from Aspergillus tubingensis, is specifically induced on xylose and not on glucuronic acid. J Bacteriol 180:243–249

    PubMed  PubMed Central  Google Scholar 

  • de Vries RP, Kester HCM, Poulsen CH, Benen JAE, Visser J (2000) Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327:401–410

    PubMed  Google Scholar 

  • Dean JFD, Anderson JD (1991) Ethylene biosynthesis-inducing xylanase. II. Purification and physical characterization of the enzyme produced by Trichoderma viride. Plant Physiol 95:316–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Debeire P, Priem B, Strecker G, Vignon M (1990) Purification and properties of an endo-1,4-xylanase excreted by a hydrolytic thermophilic anaerobe, Clostridium thermolacticum—a proposal for its action mechanism on larchwood 4-O-methylglucuronoxylan. Eur J Biochem 187:573–580

    CAS  PubMed  Google Scholar 

  • Dupont MS, Selvendran RR (1987) Hemicellulose polymers from the cell walls of beeswing wheat bran: Part I, polymers solubilized by alkali. Carbohydr Res 163:99–113

    CAS  Google Scholar 

  • Faulds CB (2003) Feruloyl esterases: molecular tools to unravel cell structure. Recent Res Dev Appl Microbiol Biotechnol 1:245–275

    CAS  Google Scholar 

  • Faulds CB, Williamson G (1994) Purification and characterization of a ferulic acid esterase (FAE-III) from Aspergillus niger: specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology 140:779–787

    CAS  Google Scholar 

  • Faulds CB, Williamson G (1995) Release of ferulic acid from wheat bran by a ferulic acid esterase (FAE-III) from Aspergillus niger. Appl Microbiol Biotechnol 43:1082–1087

    CAS  PubMed  Google Scholar 

  • Faulds CB, Kroon PA, Saulnier L, Thibault J-F, Williamson G (1995) Release of ferulic acid from maize bran and derived oligosaccharides by Aspergillus niger esterases. Carbohydr Polym 27:187–190

    CAS  Google Scholar 

  • Faulds CB, Sancho AI, Bartolomé B (2002) Mono- and dimeric ferulic acid release from Brewers’ spent grain by fungal feruloyl esterases. Appl Microbiol Biotechnol 60:489–493

    CAS  PubMed  Google Scholar 

  • Faulds CB, Zanichelli D, Crepin VF, Connerton IF, Juge N, Bhat MK, Waldron KW (2003) Specificity of feruloyl esterases for water-extractable and water-unextractable feruloylated polysaccharides: influence of xylanase. J Cereal Sci 38:281–288

    CAS  Google Scholar 

  • Faulds CB, Mandalari G, LoCurto R, Bisignano G, Waldron KW (2004) Arabinoxylan and mono- and dimeric ferulic acid release from brewer’s spent grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicola insolens. Appl Microbiol Biotechnol 64:644–650

    CAS  PubMed  Google Scholar 

  • Fujimoto Z, Kaneko S, Kuno A, Kobayashi H, Kusakabe I, Mizuno H (2004) Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J Biol Chem 279:9606–9614

    CAS  PubMed  Google Scholar 

  • Gorbacheva IV, Rodionova NA (1977) Studies on xylan degrading enzymes. 1. Purification and characterization of endo-1,4-β-xylanase from Aspergillus niger str. 14. Biochim Biophys Acta 484:79–93

    CAS  PubMed  Google Scholar 

  • Grabber JH, Hatfield RD, Ralph J (1998) Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric 77:193–200

    CAS  Google Scholar 

  • Hermoso JA, Sanz-Aparicio J, Molina R, Juge N, González R, Faulds CB (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggests evolutive functional convergence in feruloyl esterase family. J Mol Biol 338:495–506

    CAS  PubMed  Google Scholar 

  • Hernanz D, Nuñez V, Sancho AI, Faulds CB, Williamson G, Bartolomé B, Gómez-Cordovés C (2001) Hydroxycinnamic acids and ferulic acid dehydrodimers in barley spent grain. J Agric Food Chem 49:4884–4888

    CAS  PubMed  Google Scholar 

  • Juge N, Williamson G, Puigserver A, Cummings NJ, Connerton IF, Faulds CB (2001) High-level production of recombinant Aspergillus niger cinnamoyl esterase (FAEA) in the methylotrophic yeast Pichia pastoris. FEMS Yeast Res 1:127–132

    CAS  PubMed  Google Scholar 

  • Kalogeris E, Christakopoulos P, Kekos D, Macris BJ (1998) Studies on the solid-state production of thermostable endoxylanases from Thermoascus aurantiacus: characterization of two isozymes. J Biotechnol 60:155–163

    CAS  Google Scholar 

  • Kalogeris E, Christakopoulos P, Kekos D, Biely P, Vrsanska M, Macris BJ (2001) Catalytic properties of the endoxylanase I from Thermoascus aurantiacus. J Mol Catal B Enzym 11:491–501

    CAS  Google Scholar 

  • Kormelink FJM, Searle-van Leeuwen MJF, Wood TM, Voragen AGJ (1993) Purification and characterization of a (1,4)-β-D-arabinoxylan arabinofuranohydrolase from Aspergillus awamori. Appl Microbiol Biotechnol 35:753–758

    Google Scholar 

  • Kroon PA, Faulds CB, Brézillon C, Williamson G (1997) Methyl phenylalkanoates as substrates to probe the active site of esterases. Eur J Biochem 248:245–251

    CAS  PubMed  Google Scholar 

  • Luonteri E, Kroon PA, Tenkanen M, Teleman A, Williamson G (1999) Activity of an Aspergillus terreus α-arabinofuranosidase on phenolic-substituted oligosaccharides. J Biotechnol 67:41–48

    CAS  PubMed  Google Scholar 

  • Mandalari G, Faulds CB, Sancho AI, Saija A, Bisignano G, Lo Curto R, Waldron KW (2005) Fractionation and characterization of arabinoxylans from brewers’ spent grain and wheat bran. J Cereal Sci 42:205–212

    CAS  Google Scholar 

  • Parker ML, Ng A, Waldron KW (2005) The phenolic acid and polysaccharide composition of cell walls of bran layers of mature wheat (Triticum aestivum L. cv Avalon) grains. J Sci Food Agric (in press)

  • Pell G, Taylor EJ, Gloster TM, Turkenburg JP, Fontes CMGA, Ferreira LMA, Nagy T, Clark SJ, Davies GJ, Gilbert HJ (2004) The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J Biol Chem 279:9597–9605

    CAS  PubMed  Google Scholar 

  • Rouau X (1983) Investigation into the effects of an enzyme preparation for baking on wheat flour dough pentosans. J Cereal Sci 18:145–157

    Google Scholar 

  • Schwarz WH, Bronnenmeier K, Krause B, Lottspeich F, Staudenbauer WL (1995) Debranning of arabinoxylan: properties of the thermoactive recombinant α-L-arabinofuranosidase from Clostridium stercorarium (ArfB). Appl Microbiol Biotechnol 43:856–860

    CAS  PubMed  Google Scholar 

  • Valverde P (1994) Barley spent grain and its future. Cerveza y Malta 122:7–26

    Google Scholar 

  • Vardakou M, Katapodis P, Samiotaki M, Kekos D, Panayotou G, Christakopoulos P (2003) Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan. Int J Biol Macromol 33:129–134

    CAS  PubMed  Google Scholar 

  • Vardakou M, Katapodis P, Topakas E, Kekos D, Macris BJ, Christakopoulos P (2004) Synergy between enzymes involved in the degradation of insoluble wheat flour arabinoxylan. Innovative Food Sci Technol 5:107–112

    CAS  Google Scholar 

  • Waldron KW, Selvendran RR (1990) Composition of the cell walls of different asparagus (Asparagus officinalis) tissues. Physiol Plant 80:568–575

    CAS  Google Scholar 

  • Waldron KW, Parr AJ, Ng A, Ralph J (1996) Cell wall esterified phenolic dimers: identification and quantification by reverse phase high performance liquid chromatography and diode array detection. Phytochem Anal 7:305–312

    CAS  Google Scholar 

  • Wood TM, McCrea SI (1996) Arabinoxylan-degrading enzyme system of the fungus Aspergillus awamori: purification and properties of an α-L-arabinofuranosidase. Appl Microbiol Biotechnol 45:538–545

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC), UK; the General Secretariat for Research and Technology (GSRT), Greece; the British Council (Athens); the European Social Fund; and the Department of the Environment, Food and Rural Affairs (DEFRA), UK. We would like to express our gratitude to Scottish Courage Ltd for supplying BSG and to ARD for the WB sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Faulds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulds, C.B., Mandalari, G., Lo Curto, R.B. et al. Synergy between xylanases from glycoside hydrolase family 10 and family 11 and a feruloyl esterase in the release of phenolic acids from cereal arabinoxylan. Appl Microbiol Biotechnol 71, 622–629 (2006). https://doi.org/10.1007/s00253-005-0184-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0184-6

Keywords

Navigation