Skip to main content

Advertisement

Log in

Ethanol fermentation from biomass resources: current state and prospects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, growing attention has been devoted to the conversion of biomass into fuel ethanol, considered the cleanest liquid fuel alternative to fossil fuels. Significant advances have been made towards the technology of ethanol fermentation. This review provides practical examples and gives a broad overview of the current status of ethanol fermentation including biomass resources, microorganisms, and technology. Also, the promising prospects of ethanol fermentation are especially introduced. The prospects included are fermentation technology converting xylose to ethanol, cellulase enzyme utilized in the hydrolysis of lignocellulosic materials, immobilization of the microorganism in large systems, simultaneous saccharification and fermentation, and sugar conversion into ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Advanced course in LCA (2005) How to decrease environmental impact by choice of car fuel. http://www.infra.kth.se/fms/utbildning/lca/project%20reports/Group%201%20-%20E85.pdf

  • Agama Energy (2003) Employment potential of renewable energy in South Africa. Research commissioned by SECCP. http://www.agama.co.za/pdf/EPRESAFinalNov2003.pdf

  • Aiba S, Shoda M (1969) Reassessment of the product inhibition in alcohol fermentation. J Ferment Technol 47:790–803

    CAS  Google Scholar 

  • Aiba S, Shoda M, Nagatani M (1968) Kinetics of product inhibition in alcoholic fermentation. Biotechnol Bioeng 11:846–864

    Google Scholar 

  • Aktinson B, Mavituna F (1991) Upstream processing. In: Biochemical engineering and biotechnology. Stockton, New York, pp 525

    Google Scholar 

  • Anthony O, Ejiofor, Yusuf C, Murray MY (1996) Culture of Saccharomyces cerevisiae on hydrolyzed waste cassava starch for production of baking-quality yeast. Enzyme Microb Technol 18:519–525

    Article  Google Scholar 

  • Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  CAS  PubMed  Google Scholar 

  • Badger PC (2002) Ethanol from cellulose: a general review. In: Janick J, Whipkey A (eds) Trends in new crops and new uses. American Society for Horticultural Science (ASHS) Press, Alexandria, VA, USA

  • Ballerini D, Desmarquest JP, Pourquie J, Nativel F, Rebeller H (1994) Ethanol production from lignocellulosics: large scale experimentation and economics. Bioresour Technol 50:17–23

    Article  CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    Article  CAS  Google Scholar 

  • Banat IM, Nigam P, Singh D, Marchant P, McHale AP (1998) Ethanol production at elevated temperatures and alcohol concentrations. Part I: Yeasts in general. World J Microbiol Biotechnol 14:809–821

    Article  CAS  Google Scholar 

  • Bente PF (1984) Ethanol from cellulose. In: Bente PF (ed) International bioenergy directory and handbook. The Bio-Energy Council, Washington, DC

  • Bollók M, Réczey K, Zacchi G (2000) Simultaneous saccharification and fermentation of steam-pretreated spruce to ethanol. Appl Biochem Biotechnol 84–86:69–80

    Article  PubMed  Google Scholar 

  • Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875

    Article  CAS  PubMed  Google Scholar 

  • Van den Broek R (2000) Sustainability of biomass electricity systems—an assessment of costs, macro-economic and environmental impacts in Nicaragua, Ireland and the Netherlands. Utrecht University, p 215

  • Brown RC, Radlein D, Piskorz J (2001) Pretreatment processes to increase pyrolytic yield of levoglucosan from herbaceous feedstocks. In: Bosell JJ (ed) American chemical society symposium series no. 784. American Chemical Society, Washington DC, USA, pp 123–134

    Google Scholar 

  • Camacho-Ruiz L, Perez-Guerra N, Roses RP (2003) Factors affecting the growth of Saccharomyces cerevisiae in batch culture and in solid sate fermentation. Electron J Environ Agric Food Chem 2(5):531–542

    Google Scholar 

  • Casey GP, Ingledew WM (1986) Ethanol tolerance in yeasts. Crit Rev Microbiol 13:219–280

    Article  CAS  PubMed  Google Scholar 

  • Caylak B, Vardar SF (1996) Comparison of different production processes for bioethanol. Turk J Chem 22:351–359

    Google Scholar 

  • Chaudhuri BK, Sahai V (1993) Production of cellulose enzyme from lactose in batch and continuous cultures by a partially constitutive strain of Tricholerma reesei. Enzyme Microb Technol 15:513–518

    Article  CAS  Google Scholar 

  • da Cruz SH, Batistote M, Ernandes JR (2003) Effect of sugar catabolite repression in correlation with the structural complexity of the nitrogen source on yeast growth and fermentation. J Inst Brew 109(4):349–355

    Article  Google Scholar 

  • Cysewski GR, Wilke CR (1976) Utilization of cellulosic materials through enzymatic hydrolysis. I. Fermentation of hydrolysate to ethanol and single cell protein. Biotechnol Bioeng 18:1297–1313

    Article  CAS  PubMed  Google Scholar 

  • Dai ZY, Hooker BS, Anderson DB, Thomas SR (2000) Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol Breed 6:277–285

    Article  CAS  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  PubMed  Google Scholar 

  • Doruker O, Onsan ZI, Kirdar B (1995) Ethanol fermentation by growing S. cerevisiae cells immobilized in small Ca-alginate beads. Turk J Chem 19:37–42

    CAS  Google Scholar 

  • Ebertova H (1966) Amylolytic enzymes of Endomycopsis capsularis. II. A study of properties of isolated a-amylase, amyloglucosidase and maltose trans glucosidase. Folia Microbiol 11:422–438

    Article  CAS  Google Scholar 

  • Egamberdiev NB, Jerusalimsky A (1968) Continuous cultivation of microorganisms. Czechoslovak Academy of Sciences, Prague

    Google Scholar 

  • Emert GH, Katzen R (1980) Gulf’s cellulose-to-ethanol process. Chemtech 10:610–614

    CAS  Google Scholar 

  • Emert GH, Katzen R, Fredrickson RE, Kaupisch KF (1980) Economic update of the Gulf cellulose alcohol process. Chem Eng Prog 76:47–52

    Google Scholar 

  • Emert GH, Katzen R, Fredrickson RE, Kaupisch KF, Yeats CE (1983) Update on the 50 T/D cellulose-to-ethanol plant (in Proc Cellulose Conf. 1982 Part 2). J Appl Polym Sci Appl Polym Symp 37:787–795

    CAS  Google Scholar 

  • Ergun M, Mutlu SF (2000) Application of a statistical technique to the production of ethanol from sugar beet molasses by Saccharomyces cerevisiae. Bioresour Technol 73:251–255

    Article  CAS  Google Scholar 

  • Fein JE, Tallim SR, Lawford GR (1984) Evaluation of d-xylose fermenting yeasts for utilization of a wood-derived hemicellulose hydrolysate. Can J Microbiol 30:682–690

    Article  CAS  Google Scholar 

  • Gary D (2002) Developing Manitoba’s ethanol industry. http://www.gov.mb.ca/est/energy/ethanol/

  • Gasperik H, Hostinova E, Zeinka J (1985) Production of extracellular amylase by Endomycopsis fibuligera on complex starch substrates. Biologia (Bratisl) 40:1176–1194

    Google Scholar 

  • Gervais P, Sarrette M (1990) Influence of age of mycelia and water activity on aroma production by Trichoderma viride. J Ferment Bioeng 69:46–50

    Article  CAS  Google Scholar 

  • Ghasem N, Habibollah Y, Ku S, Ku I (2004) Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Bioresour Technol 92:251–260

    Article  CAS  Google Scholar 

  • Ghose TK, Tyagi RD (1979) Rapid ethanol fermentation of cellulose hydrolysate II. Product and substrate inhibition and optimization of fermentor design. Biotechnol Bioeng 21:1401–1420

    Article  CAS  Google Scholar 

  • Gikas P, Livingston AG (1997) Specific ATP and specific oxygen uptake rate in immobilized cell aggregates: experimental results and theoretical analysis using a structured model of immobilized cell growth. Biotechnol Bioeng 55:660–672760

    Article  CAS  PubMed  Google Scholar 

  • Gong CS, Maun CM, Tsao GT (1981) Direct fermentation of cellulose to ethanol by a cellulolytic filamentous fungus Monilia sp. Biotechnol Lett 3:77–82

    Article  CAS  Google Scholar 

  • Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO (2003) Gene Array-Based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (Parent) to LY01 (resistant mutant). Biotechnol Prog 19:612–623

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New York Berlin Heidelberg, p 237

    Book  Google Scholar 

  • Green M, Kimchie S, Malester I, Shelef G (1989) Ethanol production from municipal solid waste via acid hydrolysis. In: Klas DL (ed) Energy from biomass and wastes XIII. Institute of Gas Technology, Chicago, pp 1281–1293

    Google Scholar 

  • Gulnur B, Pemra D, Betul K, Ilsen O, Kutlu U (1998) Mathematical description of ethanol fermentation by immobilized Saccharomyces Cererisiae. Process Biochem 33(7):763–771

    Article  Google Scholar 

  • Haltrich D, Laussamayer B, Steiner W, Nidetzky B, Kulbe D (1994) Cellulolytic and semicellulolytic enzymes of Sclerotium rolfsii: optimization of the culture medium and enzymatic hydrolysis of lignocellulosic material. Bioresour Technol 50:43–50

    Article  CAS  Google Scholar 

  • Hari KS, Janardhan RT, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using thermotolerant yeast. Bioresour Technol 77:193–196

    Article  Google Scholar 

  • Herrero AA, Gomez RF (1980) Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol 40:571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinman ND, Schell DJ, Riley CJ, Bergeron PW, Walter PJ (1992) Preliminary estimate of the cost of ethanol production for SSF technology. Appl Biochem Biotechnol 34/35:639–49

    Article  Google Scholar 

  • Hinshelwood CN (1946) Kinetics of the bacterial cell. Oxford University Press, London, UK

    Google Scholar 

  • Ho NWY, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192

    CAS  PubMed  Google Scholar 

  • Holzberg I, Finn RF, Steinkraus KH (1967) A kinetic study of the alcoholic fermentation of grape juice. Biotechnol Bioeng 9:413–423

    Article  CAS  Google Scholar 

  • Hooker BS, Dai Z, Anderson DB, Quesenberry RD, Ruth MF, Thomas SR (2001) Production of microbial cellulases in transgenic crop plants. In: Himmel ME, Baker JO, Saddler JN (eds) Glycosyl hydrolases for biomass conversion. American Chemical Society, Washington, DC, pp 55–90

    Google Scholar 

  • Hoppe GK, Hansford GS (1982) Ethanol inhibition of continuous anaerobic yeast growth. Biotechnol Lett 4:39–44

    Article  CAS  Google Scholar 

  • Hsu T (1996) Pretreatment of biomass. In: Wyman C (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington DC, pp 179–212

    Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingram LO, Doran JB (1995) Conversion of cellulosic materials to ethanol. FEMS Microbiol Rev 16:235–241

    Article  CAS  Google Scholar 

  • Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1998) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58(2,3):204–214

    Article  CAS  PubMed  Google Scholar 

  • Iraj N, Giti E, Lila A (2002) Isolation of flocculating Saccharomyces cerevisiae and investigation of its performance in the fermentation of beet molasses to ethanol. Biomass Bioenergy 23:481–486

    Article  Google Scholar 

  • Ito K, Yoshida K, Ishikawa T, Kobayashi S (1990) Volatile compounds produced by fungus Aspergillus oryzae in rice koji and their changes during cultivation. J Ferment Bioeng 70:169–172

    Article  CAS  Google Scholar 

  • Jackman EA (1987) Industrial alcohol. In: Bu’lock JD, Christiansen B (eds) Basic biotechnology. Academic, London, pp 309–336

    Google Scholar 

  • Jeewon L (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  Google Scholar 

  • Jeffries TW, Jin YS (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 47:221–268

    Article  CAS  PubMed  Google Scholar 

  • Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation of yeasts. Adv Biochem Eng Biotechnol 65:117–161

    CAS  PubMed  Google Scholar 

  • Jobses IML, Egberts GTC, van Baalen A, Roels JA (1985) Substrate-limited continuous culture results at all growth rates and showed a slight downward. Biotechnol Bioeng 27:984–995

    Article  CAS  PubMed  Google Scholar 

  • John T (2004) Biofuels for transport. http://www.task39.org/

  • Kaar WE, Holtzapple MT (2000) Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenergy 18:189–199

    Article  CAS  Google Scholar 

  • Kadam KL, McMillan JD (2003) Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour Technol 18:17–25

    Article  Google Scholar 

  • Kaylen ML, Van Dyne D, Choi YS, Blase M (2000) Economic feasibility of producing ethanol from lignocellulosic feedstocks. Bioresour Technol 72:19

    Article  CAS  Google Scholar 

  • Keim CR (1983) Technology and economics of fermentation alcohol—an update. Enzyme Microb Technol 5:103–114

    Article  CAS  Google Scholar 

  • Kelly CT, Moriarty ME, Fogarty WM (1985) Thermostable extracellular a-amylase and α-glucosidase of Lipomyces starkeyi. Appl Microbiol Biotechnol 22:352–358

    Article  CAS  Google Scholar 

  • Kerr RA (1998) The next oil crisis looms large—and possibly close. Science 281:1128–1131

    Article  CAS  Google Scholar 

  • Kiran S, Sikander A, Lkram-ul-Haq (2003) Time course study for yeast invertase production by submerged fermentation. J Biol Sci 3(11):984–988

    Article  Google Scholar 

  • Klein K (2005). Economic and social implications of bio-fuel use and production in Canada. http://www.biocap.ca/images/pdfs/conferenceSpeakers/Klein_K.pdf

  • Lee JM (1988) Computer simulation in ethanol fermentation. In: Fofer SS, Zaborsky OR (eds) Biomass conversion processes for energy and fuels. Plenum, New York

  • Leticia P, Miguel C, Humberto G, Jaime AJ (1997) Fermentation parameters influencing higher alcohol production in the tequila process. Biotechnol Lett 19(1):45–47

    Article  Google Scholar 

  • Lindeman LR, Rocchiccioli C (1979) Ethanol in Brazil; brief summary of the sate of the industry in 1977. Biotechnol Bioeng 21:1107–1119

    Article  Google Scholar 

  • Lucas C, van Uden N (1985) The temperature profiles of growth, thermal death and ethanol tolerance of the xylose-fermenting yeast Candida shehatae. J Basic Microbiol 25:547–550

    Article  CAS  PubMed  Google Scholar 

  • Luong JHT (1985) Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol Bioeng 27:280–285

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol production from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465

    Article  Google Scholar 

  • Lynd LR, Lyford K, South CR, van Walsum GP, Levenson K (2001) Evaluation of paper sludges for amenability to enzymatic hydrolysis and conversion to ethanol. Tappi J 84(2):50

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald T, Yowell G, McCormack M (2001) Staff report. US ethanol industry production capacity outlook. California energy commission. Available at http://www.energy.ca.gov/reports/2001-08-29_600-01-017.PDF

  • Maiorella BL (1985) Ethanol. In: Comprehensive biotechnology, vol 3. Pergamon, Oxford, pp 861–909

    Google Scholar 

  • Maiorella BL, Blanch HW, Wilke CR (1984) Economic evaluation of alternative ethanol fermentation processes. Biotechnol Bioeng 26:1003–1025

    Article  CAS  PubMed  Google Scholar 

  • Maisch WF, Sobolov M, Petricola AJ (1979) Distilled beverages. In: Peppler HJ, Perlman D (eds) Microbial technology. Academic, New York, pp 79

    Chapter  Google Scholar 

  • Marco DL, Cristiano PB, Tito LMA (2002) Economic analysis of ethanol and fructose production by selective fermentation coupled to pervaporation: effect of membrane costs on process economics. Desalination 147:161–166

    Article  Google Scholar 

  • Matsumoto N, Yoshizumi H, Miyata S, Inoue S (1985) Development of the non-cooking and low temperature cooking systems for alcoholic fermentation of grains. Nippon Nogeikagaku Kaishi 59:291–299

    Article  CAS  Google Scholar 

  • Matthew H, Ashley O, Brian K, Alisa E, Benjamin JS (2005) Wine making 101. Available at http://www.arches.uga.edu/∼matthaas/strains.htm

  • McMillan JD, Newman MM, Templeton DW, Mohagheghi A (1999) Simultaneous saccharification and cofermentation of dilute-acid pretreated yellow poplar hardwood to ethanol using xylose-fermenting Zymomonas mobilis. Appl Biochem Biotechnol 77/79:649–655

    Article  Google Scholar 

  • Millichip RJ, Doelle HW (1989) Large-scale ethanol production from Milo (Sorghum) using Zymomonas mobilis. Process Biochem 24:141–145

    CAS  Google Scholar 

  • Miyamoto K (1997) Renewable biological systems for alternative sustainable energy production. http://www.fao.org/docrep/w7241e/w7241e00.htm#Contents

  • MN Pollution Control Agency (2005). http://www.me3.org/issues/ethanol/

  • Monique H, Faaij A, van den Broek R, Berndes G, Gielen D, Turkenburg W (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25:119–133

    Article  Google Scholar 

  • Monod J (1950) The growth of bacterial culture. Ann Rev Microbiol 3:371

    Article  Google Scholar 

  • Mori A, Konno N, Terui G (1970) Kinetic studies on submerged acetic acid fermentation. I. Behaviors of Acetobacter rancens cells towards dissolved oxygen. J Ferment Technol 48:203–212

    CAS  Google Scholar 

  • Morikawa Y, Tadokoro T (1987) Alcohol as a fuel. New manufacturing method by fermentation and its problems. Nenryo Kyokaishi 66:982–991

    CAS  Google Scholar 

  • Morikawa Y, Kawamori M, Ado Y, Shinsha Y, Oda F, Takasawa S (1985) Production of ethanol from biomasses. Part 1. Improvement of cellulose production in Trichoderma reesei. Agric Biol Chem 49:1869–1871

    Article  CAS  Google Scholar 

  • Morikawa Y, Takasawa S, Masunaga I, Takayama K (1985) Ethanol production from d-xylose and cellobiose by Kluyveromyces cellobiovorus. Biotechnol Bioeng 27:509–513

    Article  CAS  PubMed  Google Scholar 

  • Moser A (1985) Kinetics of batch fermentations. In: Rehm HJ, Reed G (eds) Biotechnology. VCH Verlagsgesellschaft mbH, Weinheim, pp 243–283

    Google Scholar 

  • de Mot R, Verachtert H (1985) Purification and characterization of the extracellular amylolytic enzymes for the yeast Filobasidium capsuligenum. Appl Environ Microbiol 50:1474–1482

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagatani M, Shoda M, Aiba S (1968) Kinetics of product inhibition in alcoholic fermentation. J Ferment Technol 46:241–249

    CAS  Google Scholar 

  • Najafpour GD (1990) Immobilization of microbial cells for the production of organic acids. J Sci Islam Repub Iran 1:172–176

    CAS  Google Scholar 

  • Namba A, Tamura A, Nagai S (1984) Synergistic effects of acetic acid and ethanol on the growth of Acetobacter sp. J Ferment Technol 62(6):501–505

    Google Scholar 

  • National Renewable Energy Laboratory (1996). http://es.epa.gov/techinfo/facts/nu-rctor.html

  • Nativel F, Pourquie J, Ballerini D, Vandecasteele JP, Renault PH (1992) The biotechnology facilities at Soustons for biomass conversion. Int J Sol Energy 11:219–229

    Article  Google Scholar 

  • Natural Resources Canada’s management team (2005). http://www2.nrcan.gc.ca/dmo/aeb/English/ReportDetail.asp?x=265&type=rpt

  • Navarro AR, Sepulveda MC, Rubio MC (2000) Bio-concentration of vinasse from the alcoholic fermentation of sugar cane molasses. Waste Manag 20:581–585

    Article  CAS  Google Scholar 

  • Novak M, Strehaiano P, Moreno M, Gama G (1981) Alcoholic fermentation: on the inhibitory effect of ethanol. Biotechnol Bioeng 23:201–211

    Article  CAS  Google Scholar 

  • Ogier JC, Ballerini D, Leygue JP, Rigal L, Pourquie J (1999) Ethanol production from lignocellulosic biomass. Oil Gas Sci Technol 54:67–94

    Article  CAS  Google Scholar 

  • Oh KK, Kim SW, Jeong YS, Hong SI (2000) Bioconversion of cellulose into ethanol by nonisothermal simultaneous saccharification and fermentation. Appl Biochem Biotechnol 89:15–30

    Article  CAS  PubMed  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification and II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):17–33

    Article  CAS  Google Scholar 

  • Park YS, Toda K (1990) Simulation study on bleed effect in cell-recycle culture of Acetobacter aceti. J Gen Appl Microbiol 36:221–233

    Article  CAS  Google Scholar 

  • Park YS, Ohtake H, Toda K (1990) A kinetic study of acetic acid production by liquid-surface culture of Acetobacter aceti. Appl Microbiol Biotechnol 33:259–263

    Article  CAS  Google Scholar 

  • Park YS, Kiyoshi T, Fukaya M, Okumura H, Kawamura Y (1991) Production of a high concentration acetic acid by Acetobacter aceti using a repeated fed-batch culture with cell recycling. Appl Microbiol Biotechnol 35:149–153

    CAS  Google Scholar 

  • Pastore GM, Park YK, Min DB (1994) Production of a fruity aroma by Neurospora from beiju. Mycol Res 98:25–35

    Article  Google Scholar 

  • Polman K (1994) Review and analysis of renewable feedstocks for the production of commodity chemicals. Appl Biochem Biotechnol 45:709–722

    Article  Google Scholar 

  • du Preez JC, Bosch M, Prior BA (1987) Temperature profiles of growth and ethanol tolerance of the xylose-fermenting yeasts Candida shehatae and Pichia stipitis. Appl Microbiol Biotechnol 25:521–525

    Article  Google Scholar 

  • Ramon-Portugal F, Delia-Dupuy ML, Pingaud H, Riba JP (1997) Kinetic study and mathematical modeling of the growth of S. cerevisiae 522D in presence of K2 killer protein. J Chem Technol Biotechnol 68:195–201

    Article  CAS  Google Scholar 

  • Reynders MB, Rawlings DE, Harrison STL (1996) Studies on the growth, modeling and pigment production by the yeast Phaffia rhodozyma during fed-batch cultivation. Biotechnol Lett 18(6):649–654

    Article  CAS  Google Scholar 

  • Riley MR, Muzzio FJ, Buettner HM, Reyes SC (1996) A simple correlation for predicting effective diffusivities in immobilized cell systems. Biotechnol Bioeng 49:223–227

    Article  CAS  PubMed  Google Scholar 

  • Robert G (2004) Profiles of successful proponents. http://www.nrcan-rncan.gc.ca/media/newsreleases/2004/200402b_e.htm

  • Rosillo-Calle F, Cortez L (1998) Towards proalcohol II: a review of the Brazilian bioethanol programme. Biomass Bioenergy 14:115–124

    Article  CAS  Google Scholar 

  • Roukas T (1996) Ethanol production from non-sterilized beet molasses by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture. J Eng 27:87–96

    Google Scholar 

  • Roychoudhury PK, Ghose TK, Ghosh P (1992) Operational strategies in vacuum-coupled SSF for conversion of lignocellulose to ethanol. Enzyme Microb Technol 14:581–585

    Article  CAS  Google Scholar 

  • Saddler JN, Chan MKH (1982) Optimization of Clostridium thermocellum growth on cellulose and pretreated wood substrates. Eur J Appl Microbiol Biotechnol 16:99–104

    Article  CAS  Google Scholar 

  • Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (1999) Comparative study of the fermentation of d-glucose/d-xylose mixtures with Pachysolen tannophilus and Candida shehatae. Bioprocess Eng 21:525–532

    CAS  Google Scholar 

  • Sasson A (1990) Feeding tomorrow’s world. UNESCO, Paris, pp 500–510

    Google Scholar 

  • Senthuran A, Senthuran V, Mattiasson B, Kaul R (1997) Lactic acid fermentation in a reactor using immobilized Lactobacilluscasei. Biotechnol Bioeng 55:841–853

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK (2000) Saccharification and bioethanol production from sunflower stalks and hulls. PhD thesis, Department of Microbiology. Punjab Agricultural University, Ludhiana, India

  • Shoemaker SP (1984) Cellulase system of Trichoderma reesei: trichoderma strain improvement and expression of Trichoderma cellulases in yeast. World Biotech Rep 2:593–600

    CAS  Google Scholar 

  • Silla AM, Zygora PSJ, Stewart GG (1984) Characterization of Sch. Castellii mutants with increased productivity of amylase. Appl Microbiol Biotechnol 20:124–128

    Google Scholar 

  • Simoes-Mendes B (1984) Purification and characterization of the extracellular amylase of the yeast Sch. Alluvius. Can J Microbiol 30:1163–1170

    Article  CAS  Google Scholar 

  • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69(4):1990–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonnleitner B, Rothen AS, Kuriyama H (1997) Dynamics of glucose consumption in yeast. Biotechnol Prog 13:8–13

    Article  CAS  PubMed  Google Scholar 

  • Spencer-Martins I, Van Uden N (1979) Extracellular amylolytic system of the yeast Lipomyces kononenkoae. Eur J Appl Microbiol Biotechnol 6:241–250

    Article  CAS  Google Scholar 

  • Spindler DD, Wyman CE, Grohmann K, Philippidis GP (1992) Evaluation of the cellobiose-fermenting yeast Brettanomyces custersii in the simultaneous saccharification and fermentation of cellulose. Biotechnol Lett 14:403–407

    Article  CAS  Google Scholar 

  • Sprenger GA (1996) Carbohydrate metabolism in Zymomonasmobilis: a catabolic highway with some scenic routes. FEMS Microbiol Lett 145:301–307

    Article  CAS  Google Scholar 

  • Stenberg K, Bollók M, Réczey K, Galbe M, Zacchi G (2000) Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnol Bioeng 68(2):201–210

    Article  Google Scholar 

  • Stepanov AI, Afanaseva VP, Zaitseva GV, Mednokova AP, Lupandina IB (1975) Regulation of the biosynthesis of the enzyme of amylolytic acomplex of Endomycopsis fibuligera. Prikl Biohim Mikrobiol 11:682–685

    CAS  Google Scholar 

  • Sugawara E, Hashimoto S, Sakurai Y, Kobayashi A (1994) Formation by yeast of the HEMF (4-hydrpxy-2 (or 5)-ethyl-5 (or 2)-methyl-3 (2H)-furanone) aroma components in Miso with aging. Biosci Biotechnol Biochem 58:1134–1135

    Article  CAS  Google Scholar 

  • Sullivan J (2005) Information meeting February 17 on environmental review, air and water permits for Heron Lake Ethanol Project. http://www.pca.state.mn.us/news/data/newsRelease.cfm?NR=266105&type=2

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Szczodrak J, Fiedurek J (1996) Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy 10(5):367–375

    Article  CAS  Google Scholar 

  • Szczodrak J, Targonski Z (1988) Selection of thermotolerant yeast strains for simultaneous saccharification and fermentation of cellulose. Biotechnol Bioeng 31:300–303

    Article  CAS  PubMed  Google Scholar 

  • Takamitsu I, Izumida H, Akagi Y, Sakamoto M (1993) Continuous ethanol fermentation in molasses medium using Zymomonasmobilis immobilized in photo-cross linkable resin gels. J Ferment Bioeng 75:32–35

    Article  Google Scholar 

  • Tampier M, Smith D, Bibeau E, Beauchemin PA (2004) Identifying environmentally preferable uses for biomass resources. http://www.cec.org/files/PDF/ECONOMY/Biomass-Stage-I-II_en.pdf

  • Tan Y, Wang Z, Marchall KC (1996) Modelling substrate inhibition of microbial growth. Biotechnol Bioeng 52:602–608

    Article  CAS  PubMed  Google Scholar 

  • Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram LO, Preston JF, Shanmugam KT (2001) Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol 183:2979–2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Targonski, Achremowicz B (1986) The effect of aromatic monomeric derivatives of lignin on the biosynthesis and activity of cellulolytic enzymes from Fusarium oxysporum. Acta Microbiol Pol 35:69–76

    Google Scholar 

  • Tembec (2003) http://tembec.com/DynamicPortal?key=web&lng=en-US&crit=about_rnd&page=tpl_about

  • Todor D, Tsonka UD (2002) Influence of the growth conditions on the resistance of Saccharomyces cerevisiae, strain NBIMCC 181, by freeze–drying. J Cult Collect 3:72–77

    Google Scholar 

  • Tolan JS, Finn RK (1987) Fermentation of d-xylose to ethanol by genetically modified Klebsiella planticola. Appl Environ Microbiol 53(9):2039–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vallet C, Said R, Rabiller C, Martin ML (1996) Natural abundance isotopic fractionation in the fermentation reaction: influence of the nature of the yeast. Bioorg Chem 24:319–330

    Article  CAS  Google Scholar 

  • Vega JL, Clausen EC, Gaddy JL (1988) Biofilm reactors for ethanol production. J Enzyme Microb Technol 10:390–402

    Article  CAS  Google Scholar 

  • Virginie AG, Bruno B, Sylvie D, Jean-Marie S (2001) Stress effect of ethanol on fermentation kinetics by stationary-phase cells of Saccharomyces cerevisiae. Biotechnol Lett 23:677–681

    Article  Google Scholar 

  • Westley J (1980) Rhodanase and sulfane pool. In: Jakoby WB (ed) Enzymatic basis of detoxification, 2. Academic, New York, pp 245–262

    Chapter  Google Scholar 

  • Wheals AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–486

    Article  CAS  PubMed  Google Scholar 

  • Wilke CR, Cysewski GR, Yang RD, von Stockar U (1976) Utilization of cellulosic materials through enzymatic hydrolysis. II. Preliminary assessment of an integrated processing scheme. Biotechnol Bioeng 18:1315–1323

    Article  CAS  PubMed  Google Scholar 

  • Wilke CR, Yang RD, Scamanna AF, Freitas RP (1981) Raw material evaluation and process development studies for conversion of biomass to sugars and ethanol. Biotechnol Bioeng 23:163–183

    Article  CAS  Google Scholar 

  • Wood BE, Beall DS, Ingram LO (1997) Production of recombinant bacterial endoglucanase as a co-product with ethanol during fermentation using derivatives of Escherichia coli KO11. Biotechnol Bioeng 55(3):547–555

    Article  CAS  PubMed  Google Scholar 

  • Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803

    Article  CAS  PubMed  Google Scholar 

  • Wu JF, Lastick SM, Updegraff DM (1986) Ethanol production from sugars derived from plant biomass by a novel fungus. Nature 321:887–888

    Article  CAS  Google Scholar 

  • Wyman CE (1994) Ethanol from lignocellulosic biomass: technology economics, and opportunities. Bioresour Technol 50:3–15

    Article  CAS  Google Scholar 

  • Yamada T, Fatigati MA, Zhang M (2002) Performance of immobilized Zymomonas mobilis 31821 (pZB5) on actual hydrolysates produced by Arkenol technology. Appl Biochem Biotechnol 98:899–907

    Article  PubMed  Google Scholar 

  • Yamauchi H, Akita O, Obata T, Amachi T, Hara S, Yoshizawa K (1989) Production and application of a fruity odor in a solid-state culture of Neurospora sp. using pregelatinized polish rice. Agric Biol Chem 53:2881–2888

    CAS  Google Scholar 

  • Yu ZS, Zhang HX (2004) Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresour Technol 93:199–204

    Article  CAS  PubMed  Google Scholar 

  • Zacchi G, Axelsson A (1989) Economic evaluation of meconcentration in products of ethanol from dilute sugar solutions. Biotechnol Bioeng 34:223–233

    Article  CAS  PubMed  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  • Zertuche L, Zall RR (1982) A study of producing ethanol from cellulose using Clostridium thermocellum. Biotechnol Bioeng 24:57–68

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkestein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  PubMed  Google Scholar 

  • Zhuang XY, Zhang HX, Yang JZ, Qi HY (2001) Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresour Technol 79:63–66

    Article  CAS  PubMed  Google Scholar 

  • Ziegler MT, Thomas SR, Danna KJ (2000) Accumulation of a thermostable endo-1,4-b-d-glucanase in the apoplast of Arabidopsisthaliana leaves. Mol Breed 6:37–46

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuzo Tanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Tanaka, S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69, 627–642 (2006). https://doi.org/10.1007/s00253-005-0229-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0229-x

Keywords

Navigation