Skip to main content

Advertisement

Log in

Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Methodology was evaluated to selectively enrich hydrogen-producing species present in biological sludge produced during organic wastewater treatment. The influence of bacterial stress enrichment on anaerobic hydrogen-producing microorganisms was investigated in batch tests using serum bottles. Enrichment conditions investigated included application of acute physical and chemical stresses: wet heat, dry heat and desiccation, use of a methanogen inhibitor, freezing and thawing, and chemical acidification with and without preacidification of the sludge at pH 3. For each enrichment sample, cultivation pH value was set at an initial value of 7. After application of selective enrichment (by bacterial stress), hydrogen production was significantly higher than that of untreated original sludge. Hydrogen production from the inocula with bacterial stress enrichment was 1.9–9.8 times greater when compared with control sludge. Chemical acidification using perchloric acid showed the best hydrogen production potential, irrespective of preacidification. Enhancement is due to the selective capture of hydrogen-producing sporeformers, which induces altered anaerobic fermentative metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • APHA (1992) Standard methods for the examination of water and wastewater, 18th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bahl H, Gottschalk G (1984) Parameters affecting solvent production by Clostridiumacetobutyricum in continuous culture. Biotechnol Bioeng Symp 14:215–223

    CAS  Google Scholar 

  • Benemann JR (1996) Hydrogen biotechnology: progress and prospects. Nat Biotechnol 14:1101–1103

    Article  CAS  PubMed  Google Scholar 

  • Benemann JR (1998) The technology of biohydrogen. In: Zaborsky OR (ed) Biohydrogen. Plenum, New York pp 19−30

    Google Scholar 

  • Billings RE (1991) The hydrogen world view. American Academy of Science, Washington, DC

    Google Scholar 

  • Brock TD, Madigan MT, Martinko JM, Parker J (1994) Biology of microorganisms. Prentice-Hall, New York

    Google Scholar 

  • Chen CC, Lin CY, Chang JS (2001) Kinetics of hydrogen production with continuous anaerobic cultures utilizing sucrose as the limiting substrate. Appl Microbiol Biotechnol 57:56–64

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Lin CY, Lin MC (2002) Acid–base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58:224–228

    Article  PubMed  Google Scholar 

  • Chin HL, Chen ZS, Chou CP (2003) Fedbatch operation using Clostridium acetobutyricum suspension culture as biocatalyst for enhancing H2 production. Biotechnol Prog 19:383–388

    Article  CAS  PubMed  Google Scholar 

  • Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Article  CAS  Google Scholar 

  • Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrogen Energy 27:235–264

    Article  CAS  Google Scholar 

  • Fang HHP, Zhang T, Liu H (2002) Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 58:112–118

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Harper SR, Pohland FG (1986) Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnol Bioeng 28:585–602

    Article  CAS  PubMed  Google Scholar 

  • Hart D (1997) Hydrogen power: the commercial future of the ultimate fuel. Financial Times Energy Publishing, London

    Google Scholar 

  • Henley M, Wallace W, Andrel T (2003) Microbial hydrogen production. AFRL Technol Horiz 3:32–33

    Google Scholar 

  • Heyndrickx M, De Vos P, Stevens T, De Ley J (1987) Effect of various external factors on the factors on the fermentative production of hydrogen gas from glucose by Clostridiumbutyricum strains in batch culture. Syst Appl Microbiol 9:163–168

    Article  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Hyun HH, Zeikus JG, Longin R, Millet J, Ryter A (1983) Ultrastructure and extreme heat resistance of spores from thermophilic Clostridium species. J Bacteriol 156:1332–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ince BK, Ince O (2000) Changes to bacterial community make-up in a two-phase anaerobic digestion system. J Chem Technol Biotechnol 75:500–508

    Article  CAS  Google Scholar 

  • Jean DS, Chang BV, Liao GS, Tsou GW, Lee DJ (2000) Reduction of microbial density level in sewage through pH adjustment and ultrasonic treatment. Water Sci Technol 42:97–102

    Article  CAS  Google Scholar 

  • Jungermann KA, Thauer RK, Leimenstoll G, Deker K (1973) Function of reduced pyridine nucleotide–ferredoxin oxidoreductases in saccharolytic clostridia. Biochim Biophys Acta 305:268–280

    Article  CAS  PubMed  Google Scholar 

  • Karube I, Urano N, Matsunaga T, Suzuki S (1982) H2 production from glucose by immobilized growing cells of Clostridium butyricum. Eur J Appl Microbiol 16:5–9

    Article  CAS  Google Scholar 

  • Kataoka N, Miya A, Kiriyama K (1997) Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol 36:41–47

    Article  CAS  Google Scholar 

  • Kenealy WR, Cao Y, Weimer PJ (1995) Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluveri grown on cellulose and ethanol. Appl Microbiol Biotechnol 44:507–513

    Article  CAS  PubMed  Google Scholar 

  • Kim BH, Bellows P, Datta R, Zeikus JG (1984) Control of carbon and electron flow in Clostridium acetobutyricum fermentation: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. Appl Environ Microbiol 48:764–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Proc Biochem 35:589–593

    Article  CAS  Google Scholar 

  • Kunst A, Draeger B, Ziegenhorn J (1983) UV-methods with hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis, 3rd edn. Metabolites 1: carbohydrates, vol 6. Chemie, Weinheim, pp 163−172

    Google Scholar 

  • Lamed RJ, Lobos JH, Su TM (1988) Effect of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microbiol 54:1216–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay JJ (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280–286

    Article  CAS  PubMed  Google Scholar 

  • Lay JJ, Li YY, Noike T (1998) A mathematical model for methane production from a landfill bioreactor. J Environ Eng ASCE 124:730–736

    Article  CAS  Google Scholar 

  • Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33:2579–2586

    Article  CAS  Google Scholar 

  • Lee YJ, Miyahara T, Noike T (2002) Effect of pH on microbial hydrogen fermentation. J Chem Technol Biotechnol 77:694–698

    Article  CAS  Google Scholar 

  • Levin D, Pitt L, Love M (2004) Biohydrogen production: prospectus and limitations to practical application. Int J Hydrogen Energy 29:173–185

    Article  CAS  Google Scholar 

  • Liu CL, Peck HD (1981) Comparative bioenergetics of sulfate reduction in Desulfovibrio and Desulfotomaculum sp. J Bacteriol 145:966–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupton FS, Conrad R, Zeikus JG (1984) Physiological function of hydrogen metabolism during growth of sulfidogenic bacteria on organic substrates. J Bacteriol 159:843–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minton NP, Clarke DJ (1989) Clostridia—biotechnology handbook, vol 3. Plenum, New York

    Google Scholar 

  • Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65

    Article  CAS  Google Scholar 

  • Nandi S, Sengupta S (1998) Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84

    Article  CAS  PubMed  Google Scholar 

  • Oehlert GW (2000) A first course in design and analysis of experiments. Freeman, New York

    Google Scholar 

  • Ohwaki K, Hungate RE (1977) Hydrogen utilization by clostridia in sewage sludge. Appl Environ Microbiol 33:1270–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto M, Miyahara T, Mizuno O, Noike T (2000) Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Sci Technol 41:25–32

    Article  CAS  PubMed  Google Scholar 

  • Olson JC, Nottingham PM (1980) Temperature. In: Silliker JH, Elliott RP, Baird-Parker AC, Bryan FL, Christian JHB, Clark DS, Olson JC, Roberts TA (eds) Microbial ecology of foods: factors affecting life and death of microorganisms. Academic, New York pp 1–37

    Google Scholar 

  • Postgate JR (1965) Recent advances in the study of the sulfate-reducing bacteria. Bacteriol Rev 29:425–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimann A, Biebl H, Deckwer WD (1996) Influence of iron, phosphate and methyl viologen on glycerol fermentation of Clostridiumbutyricum. Appl Microbiol Biotechnol 45:47–50

    Article  CAS  Google Scholar 

  • Setlow P (2000) Resistance of bacterial spores. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 217–230

    Google Scholar 

  • Sonenshein (2000) Bacterial sporulation: a response to environmental signals. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, DC pp 199–215

    Google Scholar 

  • Sparling R, Risbey D, Poggi-Varaldo HM (1997) Hydrogen production from inhibited anaerobic composters. Int J Hydrogen Energy 22:563–566

    Article  CAS  Google Scholar 

  • Speece RE (1996) Anaerobic biotechnology for industrial wastewaters. Archae Press, Nashville, TN

    Google Scholar 

  • Suzuki S, Karube I (1983) Energy production with immobilized cells. Appl Biochem Bioeng 4:281–310

    Article  CAS  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (1999) Principles and applications of soil microbiology. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Taguchi F, Mizukami N, Taki TS, Hasegawa K (1995) Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain no-2. Can J Microbiol 41:536–540

    Article  CAS  Google Scholar 

  • Takabatake H, Suzuki K, Ko I-B, Noike T (2004) Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria. Bioresour Technol 95:151–158

    Article  CAS  PubMed  Google Scholar 

  • Tanisho S, Kamiya N, Wako N (1989) Hydrogen evolution of Enterobacter aerogens depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochim Biophys Acta 973:1–6

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann KA, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno Y, Haruta S, Ishii M, Igarashi Y (2001) Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57:555–562

    Article  CAS  PubMed  Google Scholar 

  • US DOE Website (2005a) http://www.eere.energy.gov/hydrogenandfuelcells/faqs_hydrogen.html

  • US DOE Website (2005b) http://www.eere.energy.gov/hydrogenandfuelcells/production/basics.html

  • Van Ginkel S, Sung S, Lay JJ (2001) Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726–4730

    Article  CAS  PubMed  Google Scholar 

  • Walther R, Hippe H, Gottschalk G (1977) Citrate, a specific substrate for the isolation of Clostridium sphenoides. Appl Environ Microbiol 33:955–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV (2003a) Sequential production of hydrogen and methane from wastewater sludge using anaerobic fermentation. J Chin Inst Chem Eng 34:683–687

    CAS  Google Scholar 

  • Wang CC, Chang CW, Chu CP, Lee DJ, Chang BV, Liao CS (2003b) Producing hydrogen from wastewater sludge by Clostridium bifermentans. J Biotechnol 102:83–92

    Article  CAS  PubMed  Google Scholar 

  • Zajic JE, Kosaric N, Brosseau JD (1978) Microbial production of hydrogen. Adv Biochem Eng/Biotechnol 7:57–109

    Article  Google Scholar 

  • Zehnder AJB (1988) Biology of anaerobic microorganism. Wiley, New York

    Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11

    Article  CAS  PubMed  Google Scholar 

  • Zinder SH, Anguish T, Cardwell SC (1984) Selective inhibition by 2-bromoethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digester. Appl Environ Microbiol 47:1343–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the Utah Agricultural Experiment Station, Utah State University, Logan, Utah 84322-4810, JP No. 7682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conly L. Hansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheong, DY., Hansen, C.L. Bacterial stress enrichment enhances anaerobic hydrogen production in cattle manure sludge. Appl Microbiol Biotechnol 72, 635–643 (2006). https://doi.org/10.1007/s00253-006-0313-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0313-x

Keywords

Navigation