Skip to main content

Advertisement

Log in

Effect of nitrite on a thermophilic, methanogenic consortium from an oil storage tank

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Samples from an oil storage tank (resident temperature 40 to 60 °C), which experienced unwanted periodic odorous gas emissions, contained up to 2,400/ml of thermophilic, lactate-utilizing, sulfate-reducing bacteria. Significant methane production was also evident. Enrichments on acetate gave sheathed filaments characteristic of the acetotrophic methanogen Methanosaeta thermophila of which the presence was confirmed by determining the PCR-amplified 16S rDNA sequence. 16S rDNA analysis of enrichments, grown on lactate- and sulfate-containing media, indicated the presence of bacteria related to Garciella nitratireducens, Clostridium sp. and Acinetobacter sp. These sulfidogenic enrichments typically produced sulfide to a maximum concentration of 5–7 mM in media containing excess lactate and 10 mM sulfate or thiosulfate. Both the production of sulfide and the consumption of acetate by the enrichment cultures were inhibited by low concentrations of nitrite (0.5–1.0 mM). Hence, addition of nitrite may be an effective way to prevent odorous gas emissions from the storage tank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Microbiol 215:403–410

    CAS  Google Scholar 

  • Boone DR, Whitman WB, Koga Y (2001) Family II. Methanosaetaceae fam. nov. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. The archaea and deeply branching and phototrophic bacteria. Springer, Berlin Heidelberg New York, p 289

    Google Scholar 

  • Cappuccino J, Sherman N (1998) Microbiology: a laboratory manual. Addision Wesley Longman, Don Mills, Ontario, pp 63–67, 311–320, 470

    Google Scholar 

  • Cato EP, George LW, Finegold SM (1986) Genus Clostridium Prazmowski 1880, 23AL. In: Sneath PH, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol. 2. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Cord-Ruwisch R (1985) A quick method for determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36

    Article  CAS  Google Scholar 

  • Davidova I, Hicks MS, Fedorak PM, Suflita JM (2001) The influence of nitrate on microbial processes in oil industry production waters. J Ind Microbiol 27:80–86

    CAS  Google Scholar 

  • Eckford RE, Fedorak PM (2002) Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters. J Ind Microbiol Biotechnol 29:83–92

    Article  CAS  Google Scholar 

  • Gardner LR, Steward PS (2002) Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29:354–360

    Article  CAS  Google Scholar 

  • Grabowski A, Blanchet D, Jeanthon C (2005) Characterization of long-chain fatty acid-degrading syntrophic associations from a biodegraded oil reservoir. Res Microbiol 156:814–821

    Article  CAS  Google Scholar 

  • Greene EA, Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Nitrite reductase of sulfate-reducing bacteria prevents their inhibition by nitrate-reducing, sulfide-oxidizing bacteria. Environ Microbiol 5:607–617

    Article  CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    Article  CAS  Google Scholar 

  • Hubert C, Nemati M, Jenneman G, Voordouw G (2003) Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate and nitrite. Biotechnol Prog 19:338–345

    Article  CAS  Google Scholar 

  • Kamagata Y, Kawaski H, Oyaizu H, Nukamura K, Mikami E, Endo G, Koga Y, Yamasato K (1992) Characterization of three thermophilic strains of Methanothrix (“Methanosaeta”) thermophila sp. nov. and rejection of Methanothrix (“Methanosaeta”) thermoacetophila. Int J Syst Bacteriol 42:463–468

    Article  CAS  Google Scholar 

  • Klüber HD, Conrad R (1998) Effect of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol Ecol 25:331–332

    Article  Google Scholar 

  • Miranda-Tello E, Fardeau ML, Sepúlveda JL, Fernández L, Cayol JL, Thomas P, Ollivier B (2003) Garciella nitratireducens gen. Nov., an anaerobic, thermophilic, nitrate- and thiosulfate- reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. Int J Syst Evol Microbiol 53:1509–1514

    Article  CAS  Google Scholar 

  • Myhr S, Lillebo B-L-P, Sunde E, Beeder J (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408

    Article  CAS  Google Scholar 

  • Nadarajah N, Singh A, Ward OP (2002) Evaluation of a mixed bacterial culture for de-emulsification of water-in-petroleum oil emulsions. World J Microbiol Biotechnol 18:435–440

    Article  CAS  Google Scholar 

  • Nemati M, Jenneman GE, Voordouw G (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434

    Article  CAS  Google Scholar 

  • Nga DP, Ha DT, Hien LT, Stan-Lotter H (1996) Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385–392

    Article  CAS  Google Scholar 

  • Pereira IAC, LeGall J, Xavier AV, Texeira M (2000) Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough. Biochim Biophys Acta 1481:119–130

    Article  CAS  Google Scholar 

  • Postgate JR (1984) The sulfate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Reinsel MA, Sears JT, Steward PS, McInerney MJ (1996) Control of microbial souring by nitrate, nitrite or glutaraldehyde injection in a sandstone column. J Ind Microbiol 17:128–136

    Article  CAS  Google Scholar 

  • Roberts GAH (1969) Microbiological corrosion of tanks in long-term storage of gas oil. Br Corros J 4:318–321

    Article  CAS  Google Scholar 

  • Snell FD, Snell CT (1949) Colorimetric methods of analysis. D. van Nostrand, New York

    Google Scholar 

  • Telang AJ, Ebert S, Foght J, Westlake DWS, Jenneman G, Gevertz D, Voordouw G (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63:1785–1793

    Article  CAS  Google Scholar 

  • Thorstenson T, Bodtker B, Sunde E, Beeder J (2002) Biocide replacement by nitrate in sea water injection systems. In: Corrosion 2002. Paper 02033. NACE International, Houston, TX

  • Voordouw G, Niviere V, Ferris FG, Fedorak PM, Westlake DWS (1990) The distribution of hydrogenase genes in Desulfovibrio and their use in identification of species from the oil-field environment. Appl Environ Microbiol 56:3748–3754

    Article  CAS  Google Scholar 

  • Voordouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629

    Article  CAS  Google Scholar 

  • Watanabe K, Kodama Y, Harayama S, Kaky N (2002a) Diversity, abundance, and activity of archaeal populations in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity. Appl Environ Microbiol 68:3899–3907

    Article  CAS  Google Scholar 

  • Watanabe K, Kodama Y, Kaku N (2002b) Diversity and abundance of bacteria in an underground oil- storage cavity. BMC Microbiol 2(23):1–10

    Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Truper HG, Dworkins M, Harder W, Schleifer KH (eds) The Prokaryotes, vol 2, 4th edn. Springer, Berlin Heidelberg New York, pp 3352–3378

    Chapter  Google Scholar 

  • Wolfe BM, Lui SM, Cowan JA (1993) Desulfoviridin, a multimeric-dissimilator sulfite reductase from Desulfovibriovulgaris (Hildenborough) purification, characterization, kinetics and EPR studies. Eur J Biochem 223:79–89

    Article  Google Scholar 

  • Zengler K, Richnow HH, Rosselló-Mora R, Michaelis W, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269

    Article  CAS  Google Scholar 

  • Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Strategic Grant from the Natural Science and Engineering Research Council of Canada (NSERC) to GV. We thank Dr. Anne Greene for the technical and intellectual assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerrit Voordouw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaster, K.M., Voordouw, G. Effect of nitrite on a thermophilic, methanogenic consortium from an oil storage tank. Appl Microbiol Biotechnol 72, 1308–1315 (2006). https://doi.org/10.1007/s00253-006-0412-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0412-8

Keywords

Navigation