Skip to main content
Log in

Biotechnological production of gluconic acid: future implications

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Gluconic acid (GA) is a multifunctional carbonic acid regarded as a bulk chemical in the food, feed, beverage, textile, pharmaceutical, and construction industries. The favored production process is submerged fermentation by Aspergillus niger utilizing glucose as a major carbohydrate source, which accompanied product yield of 98%. However, use of GA and its derivatives is currently restricted because of high prices: about US$ 1.20–8.50/kg. Advancements in biotechnology such as screening of microorganisms, immobilization techniques, and modifications in fermentation process for continuous fermentation, including genetic engineering programmes, could lead to cost-effective production of GA. Among alternative carbohydrate sources, sugarcane molasses, grape must show highest GA yield of 95.8%, and banana must may assist reducing the overall cost of GA production. These methodologies would open new markets and increase applications of GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anastassiadis S, Rehm HJ (2006a) Continuous gluconic acid production by the yeast-like Aureobasidium pullulans in a cascading operation of two bioreactors. Appl Microbiol Biotechnol 73:541–548

    Article  CAS  PubMed  Google Scholar 

  • Anastassiadis S, Rehm HJ (2006b) Continuous gluconic acid production by Aureobasidium pullulans with and without biomass retention. Electron J Biotechnol 9:494–504

    Google Scholar 

  • Anastassiadis S, Aivasidis A, Wandrey C (2003) Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullulans. Appl Microbiol Biotechnol 61:110–117

    Article  CAS  PubMed  Google Scholar 

  • Anastassiadis S, Aivasidis A, Wandrey C, Rehm HJ (2005) Process optimization of continuous gluconic acid fermentation by isolated yeast-like strains of Aureobasidium pullulans. Biotechnol Bioeng 91:494–501

    Article  CAS  PubMed  Google Scholar 

  • Blom RH, Pfeifer VF, Moyer AJ, Traufler DH, Conway HF, Crocker CK, Farison RE, Hannibal DV (1952) Sodium gluconate production. Ind Eng Chem 44:435–440

    Article  CAS  Google Scholar 

  • Business Communication Co. (BCC) (2004) GA-103R-World markets for fermentation ingredients. Norwalk, CT, USA

  • Buzzini P, Gabbbetti M, Rossi J, Ribaldi M (1993) Utilization of grape must and concentration rectified grape must to produce gluconic acid by Aspergillus niger, in batch fermentation. Biotechnol Lett 15:151–156

    Article  CAS  Google Scholar 

  • Clark DS, Ito K, Horitsu H (1966) Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol Bioeng 8:465–471

    Article  CAS  Google Scholar 

  • Fiedurek J, Szczodrak J (1995) Glucose oxidase biosynthesis in relation to biochemical mutations in Aspergillus niger. Acta Biotechnol 15:107–115

    Article  CAS  Google Scholar 

  • Fiedurek J, Gromada A, Pielecki J (1998) Simultaneous production of catalase, glucose oxidase and gluconic acid by Aspergillus niger mutant. Acta Microbiol Pol 47:355–364

    CAS  PubMed  Google Scholar 

  • Fischer K, Bipp HP (2005) Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues. Bioresour Technol 96:831–842

    Article  CAS  PubMed  Google Scholar 

  • Gupta JK, Heding LG, Jargensen OB (1976) Effect of sugars, pH and ammonium nitrate on formation of citric acid by Aspergillus niger. Acta Microbiol Acad Sci Hung 23:63–67

    CAS  PubMed  Google Scholar 

  • Hartmeier W, Doppner T (1983) Preparation and properties of mycelium bound glucose oxidase co-immobilized with excess catalase. Biotechnol Lett 5:743–748

    Article  CAS  Google Scholar 

  • Heinrich M, Rehm HJ (1982) Formation of gluconic acid at low pH-values by free and immobilized Aspergillus niger cells during citric acid fermentation. Eur J Appl Microbiol Biotechnol 15:88–92

    Article  CAS  Google Scholar 

  • Herrick HT, May OE (1928) The production of gluconic acid by the Penicillium luteum- purpurogenum group. J Biol Chem 77:185–195

    CAS  Google Scholar 

  • Hustede H, Haberstroch HJ, Schinzig E (1989) Gluconic acid. In: ULLMANN’S encyclopedia of industrial chemistry, vol A 12. VCH-Weinheim, pp 449–456

  • Ikeda Y, Park EY, Okuda N (2006) Bioconversion of waste office paper to gluconic acid in a turbine blade reactor by the filamentous fungus Aspergillus niger. Bioresour Technol 97:1030–1035

    Article  CAS  PubMed  Google Scholar 

  • Klein J, Rosenberg M, Markoš J, Dolgoš O, Krošlák M, Krištofíková L (2002) Biotransformation of glucose to gluconic acid by Aspergillus niger-study of mass transfer in an airlift bioreactor. Biochem Eng J 10:197–205

    Article  CAS  Google Scholar 

  • Kundu P, Das A (1984) Utilization of cheap carbohydrate sources for production of calcium gluconate by Penicillium funiculosum mutant MN 238. Indian J Exp Biol 22:279–281

    CAS  PubMed  Google Scholar 

  • Kundu S, Panda T, Majumdar SK, Guha B, Bandyopadhyay KK (1984) Pretreatment of Indian cane molasses for increased production of citric acid. Biotechnol Bioeng 26:1114–1121

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud SA, El-Sawy M, Nour El-Din Ibrahim OO (1976) Studies on some nutritional factors influencing the production of gluconic acid. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Suppl 131:361–374

    CAS  Google Scholar 

  • Mandal SK, Chatterjee SP (1985) Improved production of calcium gluconate by mutants of Penicillium funiculosum. Curr Sci 54:149

    CAS  Google Scholar 

  • Markwell J, Frakes LG, Brott EC, Osterman J, Wagner FW (1989) Aspergillus niger mutants with increased glucose oxidase production. Appl Microbiol Biotechnol 30:166–169

    Article  CAS  Google Scholar 

  • Milson PE, Meers JL (1985) Gluconic acid, itaconic acid. In: Blanch HW, Drew S, Wang DIC (eds) Comprehensive biotechnology, vol. 3. Pergamon, Oxford, pp 681–700

    Google Scholar 

  • Moksia J, Larroche C, Gros JB (1996) Gluconate production by spores of Aspergillus niger. Biotechnol Lett 18:1025–1030

    Article  CAS  Google Scholar 

  • Moresi M, Parente E, Mazzatura A (1991) Effect of dissolved oxygen concentration on repeated production of gluconic acid by immobilized mycelia of Aspergillus niger. Appl Microbiol Biotechnol 36:320–323

    CAS  Google Scholar 

  • Mukhopadhyay R, Chatterjee S, Chatterjee BP, Banerjee PC, Guha AK (2005) Production of gluconic acid from whey by free and immobilized Aspergillus niger. Int Dairy J 15:299–303

    Article  CAS  Google Scholar 

  • Nakamatsu T, Akamatsu T, Miyajima R, Shio I (1975) Microbial production of glucose oxidase. Agric Biol Chem 39:1803–1811

    CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 77:149–162

    CAS  Google Scholar 

  • Park EH, Shin YM, Lim YY, Kwon TH, Kim DH, Yang MS (2000) Expression of glucose oxidase by using recombinant yeast. J Biotechnol 81:35–44

    Article  CAS  PubMed  Google Scholar 

  • Petruccioli M, Piccioni P, Dederici F, Polsineli M (1995) Glucose oxidase overproducing mutants of Penicillium variable (P16). FEMS Microbiol Lett 128:107–112

    Article  CAS  Google Scholar 

  • Pulci V, D’Ovidio R, Petruccioli M, Federici F (2004) The glucose oxidase of Penicillium variabile P16: gene cloning, sequencing and expression. Lett Appl Microbiol 38:233–238

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production, a review. Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  • Rao DS, Panda T (1994) Comparative analysis of different whole cell immobilized Aspergillus niger catalysts for gluconic acid fermentation using pretreated cane molasses. Bioprocess Biosyst Eng 11:209–212

    Article  CAS  Google Scholar 

  • Rao D, Panda T, Rao DS (1994) Critical analysis of the effect of metal ions on gluconic acid production by Aspergillus niger using a treated cane molasses. Bioprocess Biosyst Eng 10:99–107

    Article  CAS  Google Scholar 

  • Ray S, Banik AK (1994) Development of a mutant strain of Aspergillus niger and optimization of some physical factors for improved calcium gluconate production. Indian J Exp Biol 32:865–868

    CAS  PubMed  Google Scholar 

  • Ray S, Banik AK (1999) Effect of ammonium and nitrate ratio on glucose oxidase activity during gluconic acid fermentation by a mutant strain of Aspergillus niger. Indian J Exp Biol 37:391–395

    CAS  PubMed  Google Scholar 

  • Roehr M, Kubicek CP, Kominek J (1996) Gluconic acid. In: Rehm HJ, Reed G (eds). Biotechnology, product of Primary Metabolism, vol. 6. Verlag Chemie, Weinheim, pp. 347–362

    Chapter  Google Scholar 

  • Rohr M, Kubicek CP, Kominek J (1983) Citric acid, gluconic acid. In: Rehm HJ, Reed G (eds). Biotechnology, vol. 3. Verlag Chemie, Weinheim, pp 420–465

    Google Scholar 

  • Rols JL, Goma G (1991) Enhanced oxygen transfer rates in fermentation using soybean oil-in-water dispersions. Biotechnol Lett 13:7–12

    Article  CAS  Google Scholar 

  • Rols JL, Condorect JS, Fonade C, Goma G (1991) Modeling of oxygen transfer in water emulsified organic liquids. Chem Eng Sci 46:1869–1873

    Article  CAS  Google Scholar 

  • Roukas T (2000) Citric acid gluconic acid production from fig by Aspergillus niger using solid-state fermentation. J Ind Microbiol Biotech 25:298–304

    Article  CAS  Google Scholar 

  • Roukas T, Harvey L (1988) The effect of pH on production of citric acid and gluconic acid from beet molasses using continuous culture. Biotechnol Lett 10:295–300

    Article  Google Scholar 

  • Sakurai H, Lee HW, Sato S, Mukataka S, Takahashi J (1989) Gluconic acid production at high concentration by Aspergillus niger immobilized on a nonwoven fabric. J Ferment Bioeng 67:404–408

    Article  CAS  Google Scholar 

  • Sankpal NV, Kulkarni BD (2002) Optimization of fermentation conditions for gluconic acid production using Aspergillus niger immobilized on cellulose microfibrils. Process Biochem 37:1343–1350

    Article  CAS  Google Scholar 

  • Sankpal NV, Joshi AP, Sutar II, Kulkarni BD (1999) Continuous production of gluconic acid by Aspergillus niger immobilized on a cellulosic support: study of low pH fermentative behaviour of Aspergillus niger. Process Biochem 35:317–325

    Article  CAS  Google Scholar 

  • Shankaranand VS, Ramesh MV, Lonsane BK (1992) Idiosyncrasies of solid state fermentation systems in the biosynthesis of metabolites by some bacterial and fungal cultures. Process Biochem 27:33–36

    Article  CAS  Google Scholar 

  • Silveira MM, Wisbeck E, Lemmel C, Erzinger G, da Costa JP, Bertasso M, Jonas R. (1999) Bioconversion of glucose and fructose to sorbitol and gluconic acid by untreated cells of Zymomonas mobilis. J Biotechnol 75:99–103

    Article  CAS  PubMed  Google Scholar 

  • Singh OV (2000) Bioconversion of agro-food by-products to gluconic acid by Aspergillus niger. Ph.D. thesis, Indian Institute of Technology, Roorkee, India (Formerly University of Roorkee)

  • Singh OV (2006) Mutagenesis and analysis of mold Aspergillus niger for extracellular glucose oxidase production using sugarcane molasses. Appl Biochem Biotechnol 135:43–58

    Article  CAS  PubMed  Google Scholar 

  • Singh OV, Singh RP (2006) Bioconversion of grape must into modulated gluconic acid production by Aspergillus niger ORS-4.410. J Appl Microbiol 100:1114–1122

    Article  CAS  PubMed  Google Scholar 

  • Singh OV, Sharma A, Singh RP (2001a) Mutagenesis and production of gluconic acid by Aspergillus niger mutant ORS-4.410 in submerged and solid state surface cultivation. Indian J Exp Biol 39:691–696

    CAS  PubMed  Google Scholar 

  • Singh OV, Sharma A, Singh RP (2001b) Optimization of fermentation conditions for gluconic acid production by mutant Aspergillus niger. Indian J Exp Biol 39:1136–1143

    CAS  PubMed  Google Scholar 

  • Singh OV, Jain RK, Singh RP (2003) Gluconic acid production under varying fermentation conditions by Aspergillus niger. J Chem Technol Biotechnol 78:208–212

    Article  CAS  Google Scholar 

  • Singh OV, Kapur N, Singh RP (2005) Evaluation of agro-food by-products for gluconic acid fermentation by Aspergillus niger ORS-4.410. World J Microbiol Biotechnol 21:519–524

    Article  CAS  Google Scholar 

  • Swart K, van de Vondervoort PJ, Witteveen CF, Visser J (1990) Genetic localization of a series of genes affecting glucose oxidase levels in Aspergillus niger. Curr Genet 18:435–439

    Article  CAS  PubMed  Google Scholar 

  • Trager M, Quzi GN, Onken U, Chopra CL (1991) Contribution of endo and extracellular glucose oxidase to gluconic acid production at increased dissolved oxygen concentration. J Chem Technol Biotechnol 50:1–11

    Google Scholar 

  • Vassilev N, Vassileva M (1992) Production of organic acids by immobilized filamentous fungi. Mycol Res 96:563–570

    Article  Google Scholar 

  • Vassilev N, Vassileva MC, Spassova DI (1993) Production of gluconic acid by Aspergillus niger immobilized on polyurethane foam. Appl Microbiol Biotechnol 39:285–288

    Article  CAS  PubMed  Google Scholar 

  • Velizarov S, Beschkov V (1994) Production of free gluconic acid by cells of Gluconobacter oxydans. Biotechnol Lett 16:715–720

    Article  CAS  Google Scholar 

  • Witteveen CFB, Vondervoot VDP, Swart K, Visser J (1990) Glucose oxidase overproducing and negative mutants of Aspergillus niger. Appl Microbiol Biotechnol 33:683–686

    Article  CAS  Google Scholar 

  • Witteveen CFB, Vondervoort VDP, Van Den Broeck HC, Van Engelenburg FAC, De Graff LH, Hillebrand MHBC, Schaap PJ, Visser J (1993) The induction of glucose oxidase, catalase and lactonase in Aspergillus niger. Curr Genet 24:408–406

    Article  Google Scholar 

  • Znad H, Markos J, Bales V (2004) Production of gluconic acid from glucose by Aspergillus niger growth and non-growth conditions. Process Biochem 39:1341–1345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Amal Das of the University of North Carolina for useful discussions. Technical support rendered by Rashmi Singh for preparing this manuscript is gratefully acknowledged. We also thank the reviewers and the editorial team for their insightful suggestions regarding the review content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om V. Singh.

Additional information

Authors’ contributions

OVS and RK are the sole contributors of this original review article. This review is based upon the published research in the area of gluconic acid fermentation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, O.V., Kumar, R. Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75, 713–722 (2007). https://doi.org/10.1007/s00253-007-0851-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0851-x

Keywords

Navigation