Skip to main content
Log in

Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The application of hydroxynitrile lyases (HNLs) as catalysts for the stereoselective condensation of HCN with carbonyl compounds has been reported as early as 1908. This enzymatic C–C bond coupling reaction furnishes enantiopure cyanohydrins which serve as versatile bifunctional building blocks for chemical synthesis. Screening of natural sources led to the discovery of both (R)- and (S)-selective HNLs, and several distinctly different classes of these enzymes with substantial differences concerning sequence, structure, and mechanism have been found. Especially during the last two centuries, HNLs have been developed into valuable biocatalysts, which can be produced in recombinant form by overexpression in microbial hosts, resulting in the implementation of industrial processes utilizing these enzymes. Recently, protein engineering in combination with in silico methods gave rise to the development of a tailor-made HNL for large-scale manufacturing of a specific target cyanohydrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asano Y, Tamura K, Doi N, Ueatrongchit T, H-Kittikun A, Ohmiya T (2005) Screening for new hydroxynitrilases from plants. Biosci Biotechnol Biochem 69:2349–2357

    CAS  PubMed  Google Scholar 

  • Banavali R, Chang MY, Fitzwater SJ, Mukkamala R (2002) Thermal hazards screening study of the reactions between hydrogen cyanide and sulfuric acid and investigations of their chemistry. Ind Eng Chem Res 41:145–152

    CAS  Google Scholar 

  • Bauer M, Griengl H, Steiner W (1999) Parameters influencing stability and activity of a S-hydroxynitrile lyase from Hevea brasiliensis in two-phase systems. Enzyme Microb Technol 24:514–522

    CAS  Google Scholar 

  • Breuer M, Hauer B (2003) Carbon–carbon coupling in biotransformation. Curr Opin Biotechnol 14:570–576

    CAS  PubMed  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinsky T (2004) Industrial methods for the production of optically active intermediates. Angw Chem Int Ed Engl 43:788–824

    CAS  Google Scholar 

  • Brunel J-M, Holmes IP (2004) Chemically catalyzed asymmetric cyanohydrin syntheses. Angew Chem Int Ed Engl 43:2752–2778

    CAS  PubMed  Google Scholar 

  • Brussee J, Roos EC, van der Gen A (1988) Bio-organic synthesis of optically active cyanohydrins and acyloins. Tetrahedron Lett 29:4485–4488

    CAS  Google Scholar 

  • Cabirol FL, Hanefeld U, Sheldon RA (2006) Immobilized hydroxynitrile lyases for enantioselective synthesis of cyanohydrins: sol–gels and cross-linked enzyme aggregates. Adv Synth Catal 348:1645–1654

    CAS  Google Scholar 

  • Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4:2337–2347

    CAS  PubMed  Google Scholar 

  • Chmura A, van der Kraan GM, Kielar F, van Langen LM, van Rantwijk F, Sheldon RA (2006) Cross-linked aggregates of the hydroxynitrile lyase from Manihot esculenta: highly active and robust biocatalysts. Adv Synth Catal 348:1655–1661

    CAS  Google Scholar 

  • Danieli B, Barra C, Carrea G, Riva S (1996) Oxynitrilase-catalyzed transformation of substituted aldehydes: the case of (±)-2-phenylpropionaldehyde and (±)-3-phenylbutyraldehyde. Tetrahedron Asymmetry 7:1675–1682

    CAS  Google Scholar 

  • Daußmann T, Rosen TC, Dünkelmann P (2006) Oxidoreductases and hydroxynitrile lyases: complementary enzymatic technologies for chiral alcohols. Eng Life Sci 6:125–129

    Google Scholar 

  • Dreveny I, Gruber K, Glieder A, Thompson A, Kratky C (2001) The hydroxynitrile lyase from almond: a lyase that looks like an oxidoreductase. Structure 9:803–815

    CAS  PubMed  Google Scholar 

  • Dreveny I, Kratky C, Gruber K (2002) The active site of hydroxynitrile lyase from Prunus amygdalus: modeling studies provide new insights into the mechanism of cyanogenesis. Protein Sci 11:292–300

    CAS  PubMed  PubMed Central  Google Scholar 

  • Effenberger F, Stelzer U (1991) Synthesis and stereoselective reactions of (R)-α-sulfonyloxynitriles. Angew Chem Int Ed Engl 30:873–874, Angew Chem 103:866–867

    Google Scholar 

  • Effenberger F, Stelzer U (1995) A convenient preparation of 2-substituted (S)-aziridines. Tetrahedron Asymmetry 6:283–286

    CAS  Google Scholar 

  • Effenberger F, Kremser A, Stelzer U (1996) A convenient synthesis of (S)-2-azidonitriles, (S)-2-aminonitriles and (S)-1,2-diamines. Tetrahedron Asymmetry 7:607–618

    CAS  Google Scholar 

  • Effenberger F, Gutterer B, Jäger J (1997) Stereoselective synthesis of (1R)- and (1R,2S)-1-aryl-2-alkylamino alcohols from (R)-cyanohydrins. Tetrahedron Asymmetry 8:459–467

    CAS  Google Scholar 

  • Effenberger F, Förster S, Wajant H (2000) Hydroxynitrile lyases in stereoselective catalysis. Curr Opin Biotechnol 11:532–539

    CAS  PubMed  Google Scholar 

  • Fechter MH, Griengl H (2002) Enzymatic synthesis of cyanohydrins. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis. Wiley, Weinheim, pp 974–989

    Google Scholar 

  • Fechter MH, Griengl H (2004) Hydroxynitrile lyases: biological sources and application as biocatalysts. Food Technol Biotechnol 42:287–294

    CAS  Google Scholar 

  • Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 16:588–593

    CAS  PubMed  Google Scholar 

  • Förster S, Roos J, Effenberger F, Wajant H, Sprauer A (1996) The first recombinant hydroxynitrile lyase and its application in the synthesis of (S)-cyanohydrins. Angew Chem Int Ed Engl 35:437–439, Angew Chem 108:493–494

    Google Scholar 

  • Gaisberger RP, Fechter MH, Griengl H (2004) The first hydroxynitrile lyase catalysed cyanohydrin formation in ionic liquids. Tetrahedron Asymmetry 15:2959–2963

    CAS  Google Scholar 

  • Gaucher A, Ollivier J, Salaün J (1991) Diastereoselective preparation of cyclopropane amino acids: synthesis of norcoronamic acid. Synlett 151–153

    Google Scholar 

  • Gerrits PJ, Willeman WF, Straathof AJJ, Heijnen JJ, Brussee J, van der Gen A (2001) Mass transfer limitation as a tool to enhance the enantiomeric excess in the enzymatic synthesis of chiral cyanohydrins. J Mol Catal B Enzym 15:111–121

    CAS  Google Scholar 

  • Glieder A, Weis R, Skranc W, Poechlauer P, Dreveny I, Majer S, Wubbolts M, Schwab H, Gruber K (2003) Comprehensive step-by-step engineering of an (R)-hydroxynitrile lyase for large-scale asymmetric synthesis. Angew Chem Int Ed Engl 42:4815–4818, Angew Chem 115:4963–4966

    CAS  PubMed  Google Scholar 

  • Gregory RJH (1999) Cyanohydrins in nature and the laboratory: biology, preparations and synthetic applications. Chem Rev 99:3649–3682

    CAS  PubMed  Google Scholar 

  • Griengl H, Schwab H, Fechter M (2000) The synthesis of chiral cyanohydrins by oxynitrilases. Trends Biotechnol 18:252–256

    CAS  PubMed  Google Scholar 

  • Gröger H (2001) Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Adv Synth Catal 343:547–558

    Google Scholar 

  • Gruber K, Kratky C (2004) Biopolymers for biocatalysis: structure and catalytic mechanism of hydroxynitrile lyases. J Polym Sci A Polym Chem 42:479–486

    CAS  Google Scholar 

  • Gruber K, Gartler G, Krammer B, Schwab H, Kratky C (2004) Reaction mechanism of hydroxynitrile lyases of the α/β-hydrolase superfamily. J Biol Chem 279:20501–20510

    CAS  PubMed  Google Scholar 

  • Hanefeld U, Li Y, Sheldon RA, Maschmeyer T (2000) CAL-B catalyzed enantioselective synthesis of cyanohydrins—a facile route to versatile building blocks. Synlett 12:1775–1776

    Google Scholar 

  • Hasslacher M, Schall M, Hayn M, Bona R, Rumbold K, Luckl J, Griengl H, Kohlwein SD, Schwab H (1997) High-level intracellular expression of hydroxynitrile lyase from the tropical rubber tree Hevea brasiliensis in microbial hosts. Protein Expr Purif 11:61–71

    CAS  PubMed  Google Scholar 

  • Hernández L, Luna H, Ruíz-Terán F, Vázquez A (2004) Screening for hydroxynitrile lyase activity in crude preparations of some edible plants. J Mol Catal B Enzym 30:105–108

    Google Scholar 

  • Hughes J, Decarvalho JPC, Hughes MA (1994) Purification, characterization, and cloning of α-hydroxynitrile lyase from cassava (Manihot esculenta Crantz). Arch Biochem Biophys 311:496–502

    CAS  PubMed  Google Scholar 

  • Inagaki M, Hiratake J, Nishioka T, Oda J (1992) One-pot synthesis of optically active cyanohydrin acetates from aldehydes via lipase-catalyzed kinetic resolution coupled with in situ formation and racemization of cyanohydrins. J Org Chem 57:5643–5649

    CAS  Google Scholar 

  • Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67:289–298

    CAS  PubMed  Google Scholar 

  • Johnson DV, Zabelinskaja-Mackova AA, Griengl H (2000) Oxynitrilases for asymmetric C–C bond formation. Curr Opin Chem Biol 4:103–109

    CAS  PubMed  Google Scholar 

  • Kimura M, Kuboki A, Sugai T (2002) Chemo-enzymatic synthesis of enantiomerically pure (R)-2-naphthylmethoxyacetic acid. Tetrahedron Asymmetry 13:1059–1068

    CAS  Google Scholar 

  • Konigsberger K, Prasad K, Repič O (1999) The synthesis of (R)- and (S)-α-trifluoromethyl-α-hydroxycarboxylic acids via enzymatic resolutions. Tetrahedron Asymmetry 10:679–687

    CAS  Google Scholar 

  • Krieble VK, Wieland WA (1921) The properties of oxynitrilase. J Am Chem Soc 43:164–175

    CAS  Google Scholar 

  • Lauble H, Förster S, Miehlich B, Wajant H, Effenberger F (2001) Structure of hydroxynitrile lyase from Manihot esculenta in complex with substrates acetone and chloroacetone: implications for the mechanism of cyanogenesis. Acta Crystallogr 57:194–200

    CAS  Google Scholar 

  • Lauble H, Miehlich B, Förster S, Wajant H, Effenberger F (2002) Crystal structure of hydroxynitrile lyase from Sorghum bicolor in complex with the inhibitor benzoic acid: a novel cyanogenic enzyme. Biochemistry 41:12043–12050

    CAS  PubMed  Google Scholar 

  • Leresche JE, Meyer H-P (2006) Chemocatalysis and biocatalysis (biotransformation): some thoughts of a chemist and of a biotechnologist. Org Process Res Dev 10:572–580

    CAS  Google Scholar 

  • Liu Z, Weis R, Glieder A (2004) Enzymes from higher eukaryotes for industrial biocatalysis. Food Technol Biotechnol 42:237–249

    CAS  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nature Rev 3:510–516

    CAS  Google Scholar 

  • Lu Y, Miet C, Kunesch N, Poisson JE (1993) A simple total synthesis of naturally occurring hydroxy-amino acids by enzymatic kinetic resolution. Tetrahedron Asymmetry 4:893–902

    CAS  Google Scholar 

  • Menéndez E, Brieva R, Rebolledo F, Gotor V (1995) Optically active (S)-ketone- and (R)-aldehyde-cyanohydrins via an (R)-oxynitrilase-catalysed transcyanation. Chemoenzymatic synthesis of 2-cyanotetrahydrofuran and 2-cyanotetrahydropyran. J Chem Soc Chem Commun 10:989–990

    Google Scholar 

  • Monterde MI, Nazabadioko S, Robolledo F, Brieva R, Gotor V (1999) Chemoenzymatic synthesis of azacycloalkan-3-ols. Tetrahedron Asymmetry 10:3449–3455

    CAS  Google Scholar 

  • Monterde MI, Brieva R, Gotor V (2001) Stereocontrolled chemoenzymatic synthesis of 2,3-disubstituted piperidines. Tetrahedron Asymmetry 12:525–528

    CAS  Google Scholar 

  • Nanda S, Kato Y, Asano Y (2006) PmHNL catalyzed synthesis of (R)-cyanohydrins derived from aliphatic aldehydes. Tetrahedron Asymmetry 17:735–741

    CAS  Google Scholar 

  • North M (1993) Catalytic asymmetric cyanohydrin synthesis. Synlett 807–820

    Google Scholar 

  • North M (2003) Synthesis and applications of non-racemic cyanohydrins. Tetrahedron Asymmetry 14:147–176

    CAS  Google Scholar 

  • Oku J-I, Inoue S (1981) Asymmetric cyanohydrin synthesis catalyzed by a synthetic cyclic dipeptide. J Chem Soc Chem Commun 229–230

  • Paizs C, Tähtinen P, Lundell K, Poppe L, Irimie F-D, Kanerva LT (2003) Preparation of novel phenylfuran-based cyanohydrin esters: lipase-catalysed kinetic and dynamic resolution. Tetrahedron Asymmetry 14:1895–1904

    CAS  Google Scholar 

  • Patel RN (2004) Biocatalytic synthesis of chiral pharmaceutical intermediates. Food Technol Biotechnol 42:305–325

    CAS  Google Scholar 

  • Pöchlauer P (1998) Synthesis of homochiral cyanohydrins in an industrial environment: hydroxynitrile lyases offer new options. Chim Oggi 16:15–19

    Google Scholar 

  • Poechlauer P, Skranc W, Wubbolts M (2004) The large-scale biocatalytic synthesis of enantiopure cyanohydrins. In: Blaser U, Schmidt E (eds) Asymmetric catalysis on industrial scale: challenges, approaches and solutions. Wiley, Weinheim, pp 151–164

    Google Scholar 

  • Purkarthofer T, Skranc W, Weber H, Griengl H, Wubbolts M, Scholz G, Pöchlauer P (2004) One-pot chemoenzymatic synthesis of protected cyanohydrins. Tetrahedron 60:735–739

    CAS  Google Scholar 

  • Purkarthofer T, Pabst T, van den Broek C, Griengl H, Maurer O, Skranc W (2006a) Large-scale synthesis of (R)-2-amino-1-(2-furyl)ethanol via a chemoenzymatic approach. Org Process Res Dev 10:618–621

    CAS  Google Scholar 

  • Purkarthofer T, Gruber K, Gruber-Khadjawi M, Waich K, Skranc W, Mink D, Griengl H (2006b) A biocatalytic Henry reaction—the hydroxynitrile lyase from Hevea brasiliensis also catalyzes nitroaldol reactions. Angew Chem Int Ed Engl 45:3454–3456, Angew Chem 118:3532–3535

    CAS  PubMed  Google Scholar 

  • Rosenthaler L (1908) Durch Enzyme bewirkte asymmetrische Synthesen. Biochem Z 14:238–253

    CAS  Google Scholar 

  • Schmid A, Hollmann F, Park JB, Bühler B (2002) The use of enzymes in the chemical industry in Europe. Curr Opin Biotechnol 13:359–366

    CAS  PubMed  Google Scholar 

  • Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435

    CAS  PubMed  Google Scholar 

  • Schoemaker H, Mink D, Wubbolts MG (2003) Dispelling the myths—biocatalysis in industrial synthesis. Science 299:1694–1697

    CAS  PubMed  Google Scholar 

  • Sharma M, Sharma NN, Bhalla TC (2005) Hydroxynitrile lyases: at the interface of biology and chemistry. Enzyme Microb Technol 37:279–294

    CAS  Google Scholar 

  • Stelzer U, Effenberger F (1993) Preparation of (S)-fluoronitriles. Tetrahedron Asymmetry 4:161–164

    CAS  Google Scholar 

  • Straathof JJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556

    CAS  PubMed  Google Scholar 

  • Sukumaran J, Hanefeld U (2005) Enantioselective C–C bond synthesis catalysed by enzymes. Chem Soc Rev 34:530–542

    CAS  PubMed  Google Scholar 

  • Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222

    CAS  PubMed  Google Scholar 

  • Tian S-K, Deng L (2001) A highly enantioselective chiral Lewis base-catalyzed asymmetric cyanation of ketones. J Am Chem Soc 123:6195–6196

    CAS  PubMed  Google Scholar 

  • Trummler K, Wajant H (1997) Molecular cloning of acetone cyanohydrin lyase from flax (Linum usitatissimum). Definition of a novel class of hydroxynitrile lyases. J Biol Chem 272:4770–4774

    CAS  PubMed  Google Scholar 

  • Trummler K, Roos J, Schwaneberg U, Effenberger F, Förster S, Pfizenmaier K, Wajant H (1998) Expression of the Zn2+-containing hydroxynitrile lyase from flax (Linum usitatissimum) in Pichia pastoris—utilization of the recombinant enzyme for enzymatic analysis and site-directed mutagenesis. Plant Sci 139:19–27

    CAS  Google Scholar 

  • van Langen LM, van Rantwijk F, Sheldon RA (2003) Enzymatic hydrocyanation of a sterically hindered aldehyde. Optimization of a chemoenzymatic procedure for (R)-2-chloromandelic acid. Org Process Res Dev 7:828–831

    Google Scholar 

  • van Langen LM, Selassa RP, van Rantwijk F, Sheldon RA (2005) Cross-linked aggregates of (R)-oxynitrilase: a stable, recyclable biocatalyst for enantioselective hydrocyanation. Org Lett 7:327–329

    PubMed  Google Scholar 

  • Vänttinen E, Kanerva LT (1995) Combination of the lipase-catalysed resolution with the Mitsunobu esterification in one pot. Tetrahedron Asymmetry 6:1779–1786

    Google Scholar 

  • Vetter J (2000) Plant cyanogenic glycosides. Toxicon 38:11–36

    CAS  PubMed  Google Scholar 

  • Veum L, Hanefeld U, Pierre A (2004) The first encapsulation of hydroxynitrile lyase from Hevea brasiliensis in a sol–gel matrix. Tetrahedron 60:10419–10425

    CAS  Google Scholar 

  • Wagner UG, Hasslacher M, Griengl H, Schwab H, Kratky C (1996) The crystal structure of the hydroxynitrile lyase from the rubber tree Hevea brasiliensis suggests that this enzyme is structurally and mechanistically related to α/β hydrolases. Structure 4:811–822

    CAS  PubMed  Google Scholar 

  • Wajant H, Effenberger F (1996) Hydroxynitrile lyases of higher plants. Biol Chem 377:611–617

    CAS  PubMed  Google Scholar 

  • Wandrey C, Liese A, Kihumbu D (2000) Industrial biocatalysis: past, present and future. Org Process Res Dev 4:286–290

    CAS  Google Scholar 

  • Weis R, Poechlauer P, Bona R, Skranc W, Luiten R, Wubbolts M, Schwab H, Glieder A (2004) Biocatalytic conversion of unnatural substrates by recombinant almond R-HNL isoenzyme 5. J Mol Catal B Enzym 29:211–218

    CAS  Google Scholar 

  • Weis R, Gaisberger R, Skranc W, Gruber K, Glieder A (2005) Carving the active site of almond R-HNL for increased enantioselectivity. Angew Chem Int Ed Engl 44:4700–4704, Angew Chem 117: 4778–4782

    PubMed  Google Scholar 

  • Willeman WF, Gerrits PJ, Hanefeld U, Brussee J, Straathof AJJ, van der Gen A, Heijnen JJ (2002) Development of a process model to describe the synthesis of (R)-mandelonitrile by Prunus amygdalus hydroxynitrile lyase in an aqueous–organic biphasic reactor. Biotechnol Bioeng 77:239–247

    CAS  PubMed  Google Scholar 

  • Woodley JM (2006) Choice of biocatalyst form for scalable processes. Biochem Soc Trans 34:301–303

    CAS  PubMed  Google Scholar 

  • Yazbeck DR, Martinez CA, Hu S, Tao J (2004) Challenges in the development of an efficient enzymatic process in the pharmaceutical industry. Tetrahedron Asymmetry 15:2757–2763

    CAS  Google Scholar 

  • Zagrobelny M, Bak S, Rasmussen AV, Jørgensen B, Naumann CM, Møller BL (2004) Cyanogenic glucosides and plant–insect interactions. Phytochemistry 65:293–306

    CAS  PubMed  Google Scholar 

  • Zandbergen P, Brussee J, van der Gen A (1992) Stereoselective synthesis of β-hydroxy-α-amino acids from chiral cyanohydrins. Tetrahedron Asymmetry 3:769–774

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support by DSM Fine Chemicals Austria is gratefully acknowledged. The Österreichische Forschungsförderungsgesellschaft (FFG), the Province of Styria, and the Styrian Business Promotion Agency (SFG) and the city of Graz—within the framework of the Kplus programme—are acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herfried Griengl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purkarthofer, T., Skranc, W., Schuster, C. et al. Potential and capabilities of hydroxynitrile lyases as biocatalysts in the chemical industry. Appl Microbiol Biotechnol 76, 309–320 (2007). https://doi.org/10.1007/s00253-007-1025-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1025-6

Keywords

Navigation