Skip to main content
Log in

Partial purification and chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium Antarctobacter

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

During screening for novel emulsifiers and surfactants, a marine alphaproteobacterium, Antarctobacter sp. TG22, was isolated and selected for its production of an extracellular emulsifying agent, AE22. This emulsifier was produced optimally in a low-nutrient seawater medium supplemented with glucose and was extractable by cold ethanol precipitation of the high-molecular-weight fraction (>100 kDa). Production of AE22 commenced towards the late exponential phase of growth, with maximum emulsifying activity detected after approximately 4 days of the cells entering the death phase. Chemical, chromatographic and nuclear magnetic resonance spectroscopic analysis confirmed AE22 to be a high-molecular-weight (>2,000 kDa) glycoprotein with high uronic acids content, thus denoting an apparent polyanionic structure. Functional characterization showed this polymer to compare well to xanthan gum and gum arabic as an emulsion-stabilizing agent for a range of different food oils. However, AE22 exhibited better stabilizing than emulsifying properties, which could be conferred by its viscosifying effect in solution or from certain chemical groups found on the polysaccharide or protein moieties of the polymer. This new high-molecular-weight glycoprotein exhibits interesting functional qualities that are comparable to other biopolymers of this type and shows particular promise as an emulsion-stabilizing agent in biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anton J, Meseguer I, Rodriguez-Valera F (1988) Production of an extracellular polysaccharide by Haloferax mediterranei. Appl Environ Microbiol 54:2381–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias S, del Moral A, Ferrer MR, Tallon R, Quesada E, Bejar V (2003) Mauran, an exopolysaccharide prodcued by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7:319–326

    Article  CAS  PubMed  Google Scholar 

  • Baird JK, Sandford PA, Cottrell IW (1983) Industrial applications of some new microbial polysaccharides. Bio/Technology 1:778–783

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Bejar V, Calvo C, Moliz J, Diaz-Martinez F, Quesada F, Quesada E (1996) Effect of growth conditions on the rheological properties and chemical composition of Volcaniella eurihalina exopolysaccharide. Appl Biochem Biotechnol 59:77–86

    Article  CAS  Google Scholar 

  • Biermann CJ (1988) Hydrolysis and other cleavages of glycosidic linkages in polysaccharides. Adv Carbohydr Chem Biochem 46:251–271

    Article  CAS  Google Scholar 

  • Boyle CD, Reade AE (1983) Characterisation of two extracellular polysaccharides from marine bacteria. Appl Environ Microbiol 46:392–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48:747–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coia KA, Stauffer KR (1987) Shelf life study of water/oil emulsions using various commercial hydrocolloids. J Food Sci 52:166–172

    Article  CAS  Google Scholar 

  • Cook EJ, Bell MV, Black KD, Kelly MS (2000) Fatty acid compositions of gonodal material and diets of the sea urchin, Psammechinus miliaris: trophic and nutritional implications. J Exp Mar Biol Ecol 255:261–274

    Article  CAS  PubMed  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crow VL (1988) Polysaccharide production by propionibacteria during lactose fermentation. Appl Environ Microbiol 54:1892–1895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Philipps R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible application. FEMS Microbiol Rev 22:151–175

    Article  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Molecular Biol Rev 61:47–64

    Article  CAS  Google Scholar 

  • Dickinson E, Murray BS, Stainsby G (1988) Protein adsorption at air–water and oil–water interfaces. In: Dickinson E, Stainsby G (eds) Advances in food emulsions and foams. Elsevier, London, pp 123–162

    Google Scholar 

  • Erickson DR, Pryde EH, Brekke OL, Mount TL, Falb RA (1980) Handbook of soy oil processing and utilization, vol III. American Soybean Association and American Oil Chemist’s Society, Champagne

    Google Scholar 

  • Garti N (1999) What can nature offer from an emulsifier point of view: trends and progress? Colloids Surf 152:125–146

    Article  CAS  Google Scholar 

  • Garti N, Leser ME (1999) Natural hydrocolloids as food emulsifiers. In: Karsa DR (ed) Design and selection of performance surfactants, vol 2. CRC, Sheffield, UK, pp 104–145

    Google Scholar 

  • Garti N, Reichman D (1994) Surface properties and emulsification activity of galactomannans. Food Hydrocoll 8:155–173

    Article  CAS  Google Scholar 

  • Graber M, Morin A, Duchiron F, Monsan PF (1988) Microbial polysaccharides containing 6-deoxysugars. Enzyme Microbiol Technol 10:198–206

    Article  CAS  Google Scholar 

  • Green DH, Llewellyn LE, Negri AP, Blackburn SI, Bolch CJS (2004) Phylogenetic and functional diversity of the cultivable bacterial community associated with the paralytic shellfish poisoning dinoflagellate Gymnodinium catenatum. FEMS Microbiol Ecol 47:345–357

    Article  CAS  PubMed  Google Scholar 

  • Hasenhuettle GL, Hartel RW (1997) Food emulsifiers and their applications. Chapman and Hall, New York

    Book  Google Scholar 

  • Hosono A, Lee J, Ametani A, Natsume M, Hirayama M, Adachi T, Kaminogawa S (1997) Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentris M101-4. Biosci Biotechnol Biochem 61:312–316

    Article  CAS  PubMed  Google Scholar 

  • Ikegami S, Williams PA, Phillips GO (1992) Interfacial properties of xanthan gum. In: Phillips GO, Wedlock DJ, Williams PA (eds) Gums and stabilizers for the food industry, vol 6. IRL, Oxford, pp 371–377

    Google Scholar 

  • Kaplan N, Zosim Z, Rosenberg E (1987) Reconstitution of emulsifying activity of Acinetobacter calcoaceticus BD4 emulsan by using pure polysaccharide and protein. Appl Environ Microbiol 53:440–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klekner V, Kosaric N (1993) Biosurfactants for cosmetic. Surfactant Sci Ser 48:373–389

    CAS  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  • Moriello VS, Lama L, Poli A, Gugliandolo C, Maugeri TL, Gambacorta A, Nicolaus B (2003) Production of exopolysaccharides from a thermophilic microorganism isolated from a marine hot spring in Flegrean areas. J Ind Microbiol Biotech 30:95–101

    Article  CAS  Google Scholar 

  • Nakajima H, Suzuki Y, Kaizu H, Hirota T (1992) Cholesterol-lowering activity of ropy fermented milk. J Food Sci 57:1327–1329

    Article  CAS  Google Scholar 

  • Nakamura M (1986) Stabilization of emulsions by a natural polymer. Study of gum arabica. Yakugakui 35:554–560

    CAS  Google Scholar 

  • Passeri A, Schmidt M, Haffner T, Wray V, Lang S, Wagner F (1992) Marine biosurfactants. IV. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl Microbiol Biotechnol 37:281–286

    Article  CAS  Google Scholar 

  • Randall RC, Phillips GO, Williams PA (1988) The role of the proteinaceous component on the emulsifying properties of gum arabic. Food Hydrocoll 2:131–140

    Article  CAS  Google Scholar 

  • Randall RC, Phillips GO, Williams PA (1989) Fractionation and characterization of gum from Acacia senegal. Food Hydrocoll 3:65–75

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron EZ (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick D (1979) Emulsifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl Environ Microbiol 37:402–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruijssenaars HJ, Stingele F, Hartmans S (2000) Biodegradability of food-associated extracellular polysaccharides. Curr Microbiol 40:194–199

    Article  CAS  PubMed  Google Scholar 

  • Sanderson GR (1990) The functional properties and application of microbial polysaccharides—a supplier’s view. In: Phillips GO, Wedlock DJ, Williams PA (eds) Gums and stabilizers for the food industry, vol 5. IRL, Oxford, pp 333–339

    Google Scholar 

  • Shepherd R, Rockey J, Sutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40:207–217

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (1994) Structure–function relationships in microbial exopolysaccharides. Biotechnol Adv 12:393–448

    Article  CAS  PubMed  Google Scholar 

  • Symes KC (1982) Lipophylic polysaccharides. Carbohydr Polym 2:276–279

    Article  CAS  Google Scholar 

  • Weiner RM (1997) Biopolymers from marine prokaryotes. Mar Biotechnol 15:390–394

    CAS  Google Scholar 

  • Williams PA, Phillips GO, Randall RC (1990) Structure–function relationships of gum arabic. In: Phillips GO, Wedlock DJ, Williams PA (eds) Gums and stabilizers for the food industry, vol 5. IRL, Oxford, pp 25–36

    Google Scholar 

  • Xu J, Shpak E, Gu T, Moo–Young M, Kieliszewski M (2005) Production of recombinant plant gum with tobacco cell culture in bioreactor and gum characterization. Biotechnol Bioeng 90:578–588

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the local funding agencies the Highlands and Islands Enterprise (HIE) and Argyll and the Islands Enterprise (AIE). We are very grateful and thank Ms. Heather Orr for her technical expertise in the lipid analysis and also Dr. Mike Burrows and Dr. Keith Davidson for their help and advice with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, T., Mulloy, B., Bavington, C. et al. Partial purification and chemical characterization of a glycoprotein (putative hydrocolloid) emulsifier produced by a marine bacterium Antarctobacter . Appl Microbiol Biotechnol 76, 1017–1026 (2007). https://doi.org/10.1007/s00253-007-1091-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1091-9

Keywords

Navigation