Skip to main content
Log in

Multi-copy expression and fed-batch production of Rhodotorula araucariae epoxide hydrolase in Yarrowia lipolytica

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Epoxide hydrolases (EHs) of fungal origin have the ability to catalyze the enantioselective hydrolysis of epoxides to their corresponding diols. However, wild type fungal EHs are limited in substrate range and enantioselectivity. Additionally, the production of fungal epoxide hydrolase (EH) by wild-type strains is typically very low. In the present study, the EH-encoding gene from Rhodotorula araucariae was functionally expressed in Yarrowia lipolytica, under the control of a growth phase inducible hp4d promoter, in a multi-copy expression cassette. The transformation experiments yielded a positive transformant, with a final EH activity of 220 U/g dw in shake-flask cultures. Evaluation of this transformant in batch fermentations resulted in ~ 7-fold improvement in EH activity over the flask scale. Different constant specific feed rates were tested in fed-batch fermentations, resulting in an EH activity of 1,750 U/g dw at a specific feed rate of ~ 0.1 g/g/h, in comparison to enzyme production levels of 0.3 U/g dw for the wild type R. araucariae and 52 U/g dw for an Escherichia coli recombinant strain expressing the same gene. The expression of EH in Y. lipolytica using a multi-copy cassette demonstrates potential for commercial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arand M, Müller F, Mecky A, Hinz W, Urban P, Pompon D, Kellner R, Oesch F (1999) Catalytic triad of microsomal epoxide hydrolase: replacement of Glu404 with Asp leads to a strongly increased turnover rate. Biochem J 337:37–43

    Article  CAS  Google Scholar 

  • Archer IVJ, Leak DJ, Widdowson DA (1996) Chemoenzymic resolution and deracemisation of (±)-1-methyl-1,2-epoxycyclohexane: the synthesis of (1-S, 2-S)-1-methylcyclohexane-1,2-diol. Tetrahedron Lett 37:8819–8822

    Article  CAS  Google Scholar 

  • Barth S, Fischer M, Schmid RD, Pleiss J (2004) Sequence and structure of epoxide hydrolases: a systematic analysis. Proteins 55:846–855

    Article  CAS  Google Scholar 

  • Botes AL, Weijers CAGM, van Dyk MS (1998) Biocatalytic resolution of 1,2-epoxyoctane using resting cells of different yeast strains with novel epoxide hydrolase activities. Biotechnol Lett 20:421–426

    Article  CAS  Google Scholar 

  • Botes AL, Labuscagne M, Roth R, Mitra RK, Lotter J, Lalloo R, Ramduth DM, Rohitlall N, Simpson C, Van Zyl P (2007) Recombinant yeasts for synthesizing epoxide hydrolases. World Pat Appl, Publication no: WO/2007/010403

  • Chang CC, Ryu DDY, Park CS, Kim J-Y (1997) Improvement of heterologous protein productivity using recombinant Yarrowia lipolytica and a cyclic fed-batch process strategy. Biotechnol Bioeng 59:379–385

    Article  Google Scholar 

  • Chang CC, Ryu DDY, Park CS, Kim J-Y, Ogrydziak DM (1998) Recombinant bioprocess optimization for heterologous protein production using two-stage, cyclic fed-batch culture. Appl Microbiol Biotechnol 49:531–537

    Article  CAS  Google Scholar 

  • Fickers P, Benetti P-H, Wache Y, Marty A, Mauersberger S, Smit MS, Nicaud J-M (2005) Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res 5:527–543

    Article  CAS  Google Scholar 

  • Grogan G, Roberts SM, Willets AJ (1996) Novel aliphatic epoxide hydrolase activities from dematiaceous fungi. FEMS Microbiol Lett 141:239–243

    Article  CAS  Google Scholar 

  • Hellwig S, Emde F, Raven NPG, Henke M, van der Logt P, Fischer R (2001) Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol Bioeng 74:344–352

    Article  CAS  Google Scholar 

  • Juretzek T, Le Dall M, Mauersberger S, Gaillardin C, Barth G, Nicaud J-M (2001) Vectors for gene expression and amplification in the yeast Yarrowia lipolytica. Yeast 18:97–113

    Article  CAS  Google Scholar 

  • Krieg HM, Botes AL, Smit MS, Breytenbach JC, Keizer K (2001) The enantioselective catalytic hydrolysis of racemic 1,2-epoxyoctane in a batch and continuous process. J Mol Cat B: Enzym 13:37–47

    Article  CAS  Google Scholar 

  • Labuschagne M (2003) Cloning of yeast epoxide hydrolase genes and expression in Yarrowia lipolytica. MSc Thesis, University of Free State, Bloemfontein, South Africa

    Google Scholar 

  • Labuschagne M (2005) Cloning and Expression of Epoxide Hydrolases: Yarrowia lipolytica as an attractive heterologous expression host. PhD Thesis, University of Free State, Bloemfontein, South Africa

    Google Scholar 

  • Labuschagne M, Albertyn J (2007) Cloning of an epoxide hydrolase-encoding gene from Rhodotorula mucilaginosa and functional expression in Yarrowia lipolytica. Yeast 24:69–78

    Article  CAS  Google Scholar 

  • Labuschagne M, Botes AL, Albertyn J (2004) Cloning and sequencing of an epoxide hydrolase gene from Rhodosporidium paludigenum. DNA Seq 15:202–205

    Article  CAS  Google Scholar 

  • Lee EY, Yoo S-S, Kim HS, Lee SJ, Oh Y-K, Park S (2004) Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis. Enzyme and Micro Technol 35:624–631

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−DDCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lotter J, Botes AL, van Dyk MS, Breytenbach JC (2004) Correlation between the physicochemical properties of organic solvents and their biocompatibility toward epoxide hydrolase activity in whole-cells of a yeast, Rhodotorula sp. Biotechnol Lett 26:1191–1195

    Article  CAS  Google Scholar 

  • Madzak C, Tréton B, Blanchin-Roland S (2000) Strong hybrid promoters an integrative expression/secretion vector for quasi-constitutive expression of heterologous proteins in the yeast Yarrowia lipolytica. J Mol Microbiol Biotechnol 2:207–216

    CAS  PubMed  Google Scholar 

  • Madzak C, Gaillardin C, Beckerich J-M (2004) Heterologous protein expression and secretion in the non-conventional yeast Yarrowia lipolytica: a review. J Biotechnol 109:63–81

    Article  CAS  Google Scholar 

  • Meza RA, Monroy AF, Mercado M, Poutou RA, Rodriguez P, Pedroza AP (2004) Study of the stability in real time of cryopreserved strain banks. U Scientiarum 9:35–42

    Google Scholar 

  • Nicaud J-M, Fabre E, Gaillardin C (1989) Expression of invertase activity in Yarrowia lipolytica and its use as a selective marker. Curr Genet 16(4):253–260

    Article  CAS  Google Scholar 

  • Nicaud JM, Madzak M, van den Broek P, Gysler C, Duboc P, Niederberger P, Gaillardin C (2002) Protein expression and secretion in the yeast Yarrowia lipolytica. FEMS Yeast Res 2:371–379

    CAS  PubMed  Google Scholar 

  • Nori H, Yamane T, Kobayashi T, Shimizu S (1983) Comparison of cell productivity among fed-batch, repeat fed-batch and continuous cultures at high cell concentration. J Ferment Technol 61:391–401

    Google Scholar 

  • Oesch F (1972) Mammalian epoxide hydrases: inducible enzymes catalysing the inactivation of carcinogenic and cytotoxic metabolites derived from aromatic and olefinic compounds. Xenobiotica 3:305–340

    Article  Google Scholar 

  • Ospiran I, Kroutil W, Mischitz M, Faber K (1997) Biocatalytic resolution of 2-methyl-2-(aryl)alkyloxiranes using novel bacterial epoxide hydrolases Tetrahedron. Asymmetry 8:65–71

    Article  Google Scholar 

  • Ozturk SS (1996) Engineering challenges in high density cell culture systems. Cytotechnology 22:3–16

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):E45

    Article  CAS  Google Scholar 

  • Rivière J (1977) Industrial applications of microbiology. John Wiley and Sons, Inc., London New York Paris

    Google Scholar 

  • Sambrook J, Fitsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Straathof AJJ, Jongejan JA (1997) The enantiomeric ratio: origin, determination and prediction. Enzyme and Microb Technol 21:559–571

    Article  CAS  Google Scholar 

  • Visser H, de Bont JAM, Verdoes JC (1999) Isolation and characterization of the epoxide hydrolase encoding gene from Xanthophyllomyces dendrorhous. Appl Environ Microbiol 65:5459–5463

    Article  CAS  Google Scholar 

  • Visser H, Vreugdenhil S, de Bont JAM, Verdoes JC (2000) Cloning and characterization of an epoxide hydrolase encoding gene from Rhodotorula glutinis. Appl Microbiol Biotechnol 53:415–419

    Article  CAS  Google Scholar 

  • Visser H, Weijer CAGM, van Ooyen AJJ, Verdoes JC (2002) Cloning, characterization and heterologous expression of epoxide hydrolase-encoding cDNA sequences from yeasts belonging to the genera Rhodotorula and Rhodosporidium. Biotechnol Lett 24:1687–1694

    Article  CAS  Google Scholar 

  • Visser H, Filho DOV, Liese A, Weijer CAGM, Verdoes JC (2003) Construction and characterization of a genetically engineered Escherichia coli strain for epoxide hydrolase-catalysed kinetic resolution of epoxides. Biocatal Biotransform 21:33–40

    Article  CAS  Google Scholar 

  • Weijers CAGM, de Bont JAM (1999) Epoxide hydrolases from yeasts and other sources: versatile tools in biocatalysis. J Mol Cat B: Enzym 6:199–214

    Article  CAS  Google Scholar 

  • Xuan J-W, Fournier P, Gaillardin C (1988) Cloning of LYS5 gene encoding saccharopine dehydrogenase from the yeast Yarrowia lipolytica by target integration. Curr Genet 14:15–21

    Article  CAS  Google Scholar 

  • Yeates CA, van Dyk MS, Botes AL, Breytenbach JC, Krieg HM (2003) Biocatalysis of nitro substituted styrene oxides by non-conventional yeasts. Biotechnol Lett 25:675–680

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Mr Khama Mathiba for his assistance with the GC analysis and INRA for supplying the genetic tools and markers as well as Dr Michel Labuschagne of UOFS for his assistance with real time PCR and information supplied. This work was funded by the Innovation Fund in South Africa, and the authors express the utmost gratitude for this funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheepak Maharajh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maharajh, D., Roth, R., Lalloo, R. et al. Multi-copy expression and fed-batch production of Rhodotorula araucariae epoxide hydrolase in Yarrowia lipolytica . Appl Microbiol Biotechnol 79, 235–244 (2008). https://doi.org/10.1007/s00253-008-1420-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1420-7

Keywords

Navigation