Skip to main content
Log in

Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09-37

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A protease was purified from the cell-free supernatant of Bacillus licheniformis RSP-09-37, a mutant from a thermophilic bacterial strain, B. licheniformis RSP-09, using affinity chromatography with α-casein agarose resin. The protease was purified 85-fold to electrophoretic homogeneity. The apparent molecular mass of purified protease was 55 kDa using gel filtration in high-performance liquid chromatography, which is in agreement with the results obtained from sodium dodecyl sulfate–polyacrylamide gel electrophoresis, suggesting a monomeric nature of the protein. The purified protease revealed temperature optima of 50°C and pH optima of 10.0 and was classified as serine protease based on its complete inhibition with phenyl methyl sulfonyl fluoride. The purified protease exhibited tolerance to both detergents and organic solvent. The synthetic activity of the protease was tested using the transesterification reaction between N-acetyl-l-phenylalanine-ethyl ester and n-propanol in organic solvents varying in their log P values and the kinetic parameters of the enzyme in these organic solvents were studied. The enzyme has potential to be employed for synthetic reactions and in detergent formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Carreno FLG, Dimes LE, Haard NF (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal Biochem 214:65–69

    Article  Google Scholar 

  • Castro GR (1999) Enzymatic activities of proteases dissolved in organic solvents. Enzyme Microb Technol 25:639–782

    Article  Google Scholar 

  • Chand S, Mishra P (2003) Research and application of microbial enzymes-India’s contribution. Adv Biochem Eng Biotechnol 85:95–124

    CAS  PubMed  Google Scholar 

  • Cruden DL, Wolfram JH, Rogers RD, Gibson DT (1992) Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl Environ Microbiol 58:2723–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada P, Sanchez-muniz R, Acebal C, Arche R, Castillon MP (1991) Characterization and optimization of immobilized polyphenol oxidase in low-water organic solvents. Biotechnol Applied Biochem 14:12–20

    CAS  Google Scholar 

  • Fersht A (1985) Enzyme structure and mechanism. Freeman, San Francisco

    Google Scholar 

  • Fujiwara N, Masui A, Imanaka T (1993) Purification and properties of the highly thermostable alkaline protease from an alkaliphilic and thermophilic Bacillus sp. J Biotechnol 30:245–256

    Article  CAS  PubMed  Google Scholar 

  • Furth AJ (1980) Removing unbound detergent from hydrophobic proteins. Anal Biochem 109:207–215

    Article  CAS  PubMed  Google Scholar 

  • Guagliardi A, Manco G, Rossi M, Bartolucci S (1989) Stability and activity of a thermostable malic enzyme in denaturants and water-miscible organic solvents. Eur J Biochem 183:25–30

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Roy I, Patel RK, Singh SP, Khare SK, Gupta MN (2005) One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J Chromatogr A 1075:103–108

    Article  CAS  PubMed  Google Scholar 

  • Huheey JE (1972) Chemistry: Principles of structure and reactivity. Harper and Row, New York

    Google Scholar 

  • Hun CJ, Rahman RNA, Salleh AB, Basri M (2003) A newly isolated organic solvent tolerant Bacillus sphaericus 205y producing organic solvent-stable lipase. Biochem Eng J 15:147–151

    Article  CAS  Google Scholar 

  • Isken S, de Bont JA (1998) Bacteria tolerant to organic solvents. Extremophiles 2:229–238

    Article  CAS  PubMed  Google Scholar 

  • Jönsson A, Adlercreutz P, Mattiasson B (1996) Temperature effects on protease catalyzed acyl transfer reactions in organic media. J Mol Catal B: Enzym 2:43–51

    Article  Google Scholar 

  • Ke T, Klibanov AM (1998) On enzymatic activity in organic solvents as a function of enzyme history. Biotechnol Bioeng 57:746–750

    Article  CAS  PubMed  Google Scholar 

  • Khmelnitsky YL, Levashov AV, Klyachko NL, Martinek K (1988) Engineering biocatalytic systems in organic media with low water content. Enzyme Microb Technol 10:710–724

    Article  Google Scholar 

  • Kidd RD, Sears P, Huang DH, Witte K, Wong CH, Farber GK (1999) Breaking the low barrier hydrogen bond in a serine protease. Protein Sci 8:410–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim K, Lee S, Lee K, Lim D (1998) Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J Bacteriol 180:3692–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klibanov AM (1986) Enzymes that work in organic solvents. Chem Tech 16:354–359

    CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–245

    Article  CAS  PubMed  Google Scholar 

  • Kwon OH, Imanishi Y, Ito Y (1999) Catalytic activity and conformation of chemically modified subtilisin Carlsberg in organic media. Biotechnol Bioeng 66:265–270

    Article  CAS  PubMed  Google Scholar 

  • Laane C, Boeren S, Hilhorst R, Veeger C (1987) Rules for optimization of biocatalysis in organic solvents. Biotechnol Bioeng 30:81–87

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Matsumoto M, de Bont JA, Isken S (2002) Isolation and characterization of the solvent-tolerant Bacillus cereus strain R1. J Biosci Bioeng 94:45–51

    Article  CAS  PubMed  Google Scholar 

  • Meos H, Haga M, Aavishkar A, Schuster M, Jakubke HD (1993) Single-step synthesis of kyotorphin in frozen solutions by chymotrypsin. Tetrahedron Asymmetry 7:1559–1564

    Article  Google Scholar 

  • Moriya K, Yanigitani S, Usami R, Horikoshi K (1995) Isolation and some properties of an organic solvent tolerant marine bacterium degrading cholesterol. J Mar Biotechnol 2:131–133

    CAS  Google Scholar 

  • Norling B (1986) The effect of anionic detergents on the ATPase activity of isolated F1 from the thermophilic bacterium PS3. Biochem Biophys Res Commun 136:899–905

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Yasui K, Shiotani T, Ishihara T, Ishikawa H (1995) Organic solvent-tolerant bacterium which secretes an organic solvent-stable proteolytic enzyme. Appl Environ Microbiol 61:4258–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogino H, Yasui K, Watanabe F, Ishikawa H (1996) An organic solvent-tolerant bacterium and its organic solvent-stable protease. Ann N Y Acad Sci 799:311–317

    Article  CAS  PubMed  Google Scholar 

  • Ogino H, Uchiho T, Yokoo J, Kobayashi R, Ichise R, Ishikawa H (2001) Role of intermolecular disulfide bonds of the organic solvent-stable PST-01 protease in its organic solvent stability. Appl Environ Microbiol 67:942–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkart HC, Wolfram JW, Rogers R, White DC (1996) Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene. Appl Environ Microbiol 62:1129–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reslow M, Adlercreutz P, Mattiasson B (1987) Organic solvents for bioorganic synthesis. Appl Microbiol Biotechnol 26:1–8

    Article  CAS  Google Scholar 

  • Sareen R, Bornscheuer U, Mishra P (2004a) A microtiter plate assay for the determination of the synthetic activity of protease. Anal Biochem 333:193–195

    Article  CAS  PubMed  Google Scholar 

  • Sareen R, Bornscheuer U, Mishra P (2004b) Synthesis of kyotorphin precursor by an organic solvent stable protease from Bacillus licheniformis RSP-09–37. J Mol Catal B Enzym 32:1–5

    Article  CAS  Google Scholar 

  • Segel IH (1975) Enzyme kinetics. Wiley, New York

    Google Scholar 

  • Strongin AY, Izotova LS, Abramov ZT, Gorodetsky DI, Ermakova LM, Baratova LA, Belyanova LP, Strepanov VM (1978) Intracellular serine protease of Bacillus subtilis: sequence homology with extracellular subtilisins. J Bacteriol 133:1401–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Towatana NH, Painupong A, Suntinanalert P (1999) Purification and characterization of an extracellular protease from alkaliphilic and thermophilic Bacillus sp. PS719. J Biosc Bioeng 87:581–587

    Article  Google Scholar 

  • You L, Arnold FH (1996) Directed evolution of subtilisin E in Bacillus subtilis to enhance activity in aqueous dimethyl formamide. Protein Eng 9:77–83

    Article  CAS  PubMed  Google Scholar 

  • Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci U S A 82:3192–3196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaks A, Klibanov AM (1988) Enzymatic catalysis in nonaqueous solvents. J Biol Chem 263:3194–3201

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ritu Sareen would like to thank the financial support provided by Council of Scientific and Industrial research, New Delhi for senior research fellowship. This work was partially supported by a grant from Ministry of Human Resource Development, Government of India to one of the authors (P.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sareen, R., Mishra, P. Purification and characterization of organic solvent stable protease from Bacillus licheniformis RSP-09-37. Appl Microbiol Biotechnol 79, 399–405 (2008). https://doi.org/10.1007/s00253-008-1429-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1429-y

Keywords

Navigation