Skip to main content
Log in

Production of chondroitin sulfate and chondroitin

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The production of microbial polysaccharides has recently gained much interest because of their potential biotechnological applications. Several pathogenic bacteria are known to produce capsular polysaccharides, which provide a protection barrier towards harsh environmental conditions, and towards host defences in case of invasive infections. These capsules are often composed of glycosaminoglycan-like polymers. Glycosaminoglycans are essential structural components of the mammalian extracellular matrix and they have several applications in the medical, veterinary, pharmaceutical and cosmetic field because of their peculiar properties. Most of the commercially available glycosaminoglycans have so far been extracted from animal sources, and therefore the structural similarity of microbial capsular polysaccharides to these biomolecules makes these bacteria ideal candidates as non-animal sources of glycosaminoglycan-derived products. One example is hyaluronic acid which was formerly extracted from hen crests, but is nowadays produced via Streptococci fermentations. On the other hand, no large scale biotechnological production processes for heparin and chondrotin sulfate have been developed. The larger demand of these biopolymers compared to hyaluronic acid (tons vs kilograms), due to the higher titre in the final product (grams vs milligrams/dose), and the scarce scientific effort have hampered the successful development of fermentative processes. In this paper we present an overview of the diverse applications and production methods of chondroitin reported so far in literature with a specific focus on novel microbial biotechnological approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adebowale A, Du J, Liang Z, Leslie JL, Eddington ND (2002) The bioavailability and pharmacokinetics of glucosamine hydrochloride and low molecular weight chondroitin sulfate after single and multiple doses to beagle dogs. Biopharm Drug Dispos 23(6):217–225. doi:10.1002/bdd.315

    Article  CAS  Google Scholar 

  • Alkhalil A, Achur RN, Valiyaveettil M, Ockenhouse CF, Gowda DC (2000) Structural requirements for the adherence of Plasmodium falciparum-infected erythrocytes to chondroitin sulphate proteoglycans of human placenta. J Biol Chem 277(11):8882–8889. doi:10.1074/jbc.M006399200

    Google Scholar 

  • Amano Enzyme USA, Ltd (2009) Microbial derived chondroitin sulfate. PCT WO2009/149155 A1

  • Bali JP, Cousse H, Neuzil E (2001) Biochemical basis of the pharmacologic action of chondroitin sulphates on the osteoarticular system. Semin Arthritis Rheum 31:58–68

    Article  CAS  Google Scholar 

  • Belcher C, Yaqub R, Fawthrop F, Bayliss M, Doherty M (1997) Synovial fluid chondroitin and keratan sulphate epitopes, glycosaminoglycans, and hyaluronan in arthritic and normal knees. Ann Rheum Dis 56(5):299–307

    Article  CAS  Google Scholar 

  • Bergefall K, Trybala E, Johansson M, Uyama T, Naito S, Yamada S, Kitagawa H, Sugahara K, Bergström T (2005) Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells. J Biol Chem 280(37):32193–32199. doi:10.1074/jbc.M503645200

    Article  CAS  Google Scholar 

  • Borsig L, Wang L, Cavalcante MC, Cardilo-Reis L, Ferreira PL, Mourao PA, Esko JD, Pvao MS (2007) Selectin blocking activity of a fucosylated chondroitin sulphate glycosaminoglycan from sea cucumber. Effect on tumor metastasis and neutrophil recruitment. J Biol Chem 282(20):14984–14991. doi:10.1074/jbc.M610560200

    Article  CAS  Google Scholar 

  • Boyce JD, Chung JY, Adler B (2000) Pasteurella multocida capsule: composition, function and genetics. J Biotechnol 83(1–2):153–60

    Google Scholar 

  • Carter GR, Annau E (1953) Isolation of capsular polysaccharides from colonial variants of Pasteurella multocida. Am J Vet Res 14(52):475–478

    CAS  Google Scholar 

  • Chong BF, Blank LM, Mclaughlin R, Nielsen LK (2005) Microbial hyaluronic acid production. Appl Microbiol Biotechnol 66(4):341–51. doi:10.1007/s00253-004-1774-4

    Article  CAS  Google Scholar 

  • Chung JY, Boyce JD, Townsend KM, Frost AJ, Ghoddusi M, Adler B (2001) Role of capsule in the pathogenesis of fowl cholera caused by Pasteurella multocida Serogroup A. Infect Immun 69:2487–2492. doi:10.1128/IAI.69.4.2487-2492.2001

    Article  CAS  Google Scholar 

  • Cimini D, Restaino OF, Catapano A, De Rosa M, Schiraldi C (2010) Production of capsular polysaccharide from Escherichia coli K4 for biotechnological applications. Appl Miccrobiol Biotechnol 85(6):1779–1787. doi:10.1007/s00253-009-2261-8

    Article  CAS  Google Scholar 

  • Conte A, Volpi N, Palmieri L, Bahous I, Ronca G (1995) Biochemical and pharmacokinetic aspects of oral treatment with chondroitin sulfate. Arzneimittelforschung 45:918–925

    CAS  Google Scholar 

  • De Angelis PL (2003) Chondroitin synthase gene and methods of making and using same. United States Patent Application 20030104601

  • De Angelis PL (2009) Chondroitin synthase gene and methods of making and using same. United States Patent 7569386

    Google Scholar 

  • De Angelis PL (2010) Methods of ex pressing Gram-negative glycosaminoglycan synthase genes in Gram-positive hosts. United States Patent 7,642,071 B2

  • DeAngelis PL, Padgett-McCue AJ (2000) Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J Biol Chem 275(31):24124–24129. doi:10.1074/jbc.M003385200

    Article  CAS  Google Scholar 

  • DeAngelis PL, Jing W, Drake RR, Achyuthan AM (1998) Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida. J Biol Chem 273(14):8454–8458

    Article  CAS  Google Scholar 

  • DeAngelis PL, Gunay NS, Toida T, Mao W, Linhardt RJ (2002) Identification of the capsular polysaccharides of type D and F Pasteurella multocida as unmodified heparin and chondroitin respectively. Car Res 337:1547–1552

    Article  CAS  Google Scholar 

  • Du J, White N, Eddington ND (2004) The bioavailability and pharmacokinetics of glucosamine hydrochloride and chondroitin sulfate after oral and intravenous single dose administration in the horse. Biopharm Drug Dispos 25(3):109–16. doi:10.1002/bdd.392

    Article  CAS  Google Scholar 

  • Fraser PE, Darabie AA, McLaurin JA (2001) Amyloid-beta interactions with chondroitin sulphate-derived monosaccharides and disaccharides. Implications for drug development. J Biol Chem 273(9):6412–6419. doi:10.1074/jbc.M008128200

    Article  Google Scholar 

  • Gilbert ME, Kirker KR, Gray SD, Ward PD, Szakacs JG, Prestwich GD, Orlandi RR (2004) Chondroitin sulfate hydrogel and wound healing in rabbit maxillary sinus mucosa. Laryngoscope 114(8):1406–1409

    Article  CAS  Google Scholar 

  • Habuchi O (2000) Diversity and functions of glycosaminoglycan sulfotransferases. Biochim Biophys Acta 1474:115–127

    CAS  Google Scholar 

  • Hiraoka N, Misra A, Belot F, Hindsgaul O, Fukuda M (2001) Molecular cloning and expression of two distinct human N-acetylgalactosamine 4-O-sulfotransferases that transfer sulfate to GalNAc beta 1–>4GlcNAc beta 1–>R in both N- and O-glycans. Glycobiology 11(6):495–504

    Article  CAS  Google Scholar 

  • Iovu M, Dumais G, du Souich P (2008) Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage 16:S14–S18

    Article  Google Scholar 

  • Krahulec J, Krahulcovà J, Medovà M, Vladimir V (2005) Influence of KfoG on capsular polysaccharide structure in Escherichia coli K4 strain. Mol Biotechnol 30:129–134. doi:10.1385/MB:30:2:129

    Article  CAS  Google Scholar 

  • Lauder RM (2009) Chondroitin sulphate: a complex molecule with potential impacts on a wide range of biological systems. Complement Ther Med 17:56–62. doi:10.1016/j.ctim.2008.08.004

    Article  Google Scholar 

  • Luo XM, Fosmire GJ, Leach RM (2002) Chicken keel cartilage as a source of chondroitin sulphate. Poult Sci 81:1086–1089

    CAS  Google Scholar 

  • Malavaki C, Mizumoto S, Karamanos N, Sugahara K (2008) Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect Tissue Res 49:133–139. doi:10.1080/03008200802148546

    Article  CAS  Google Scholar 

  • Manzoni M, Bergomi S, Molinari F, Cavazzoni V (1996) Production and purification of an extracellularly produced K4 polysaccharide from Escherichia coli. Biotechnol Lett 18(4):383–386

    Article  CAS  Google Scholar 

  • Mellata M, Dho-Moulin M, Dozois CM, Curtiss R 3rd, Lehoux B, Fairbrother JM (2003) Role of avian pathogenic Escherichia coli virulence factors in bacterial interaction with chicken heterophils and macrophages. Infect Immun 71:494–503

    Article  CAS  Google Scholar 

  • McAlindon TE, LaValley MP, Gulin JP, Felson DT (2000) Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA 283(11):1469–1475

    Article  CAS  Google Scholar 

  • McCarty MF, Russel AL, Seed MP (2000) Sulphated glycosaminoglycans and glucosamine may sinergize in promoting synovial hyaluronic acid synthesis. Med Hypotheses 54:798–802. doi:10.1054/mehy.1999.0954

    Article  CAS  Google Scholar 

  • Michel BA, Brühlmann P, Stucky G, Uebelhart D (2002) Chondroprotection through chondroitin 4 & 6 sulphate (Condrosulf®): the Zurich study. IBSA Satellite Symposium held at the Annual European Congress of Rheumatology (EULAR), Stockholm, 12-5 June 2002

  • Michel BA, Stucki G, Frey D, De Vathaire F, Vignon E, Bruehlmann P, Uebelhart D (2005) Chondroitins 4 and 6 sulfate in osteoarthritis of the knee: a randomized, controlled trial. Arthritis Rheum 52(3):779–786. doi:10.1002/art.20867

    Article  CAS  Google Scholar 

  • Mitchell C, Navison M, Jackson LF, Fox R, Lee DC, Campbell JS, Fausto N (2005) Heparin binding epidermal growth factor links hepathocyte priming with cell cycle progression during liver regeneration. J Biol Chem 280(4):2562–2568

    Article  CAS  Google Scholar 

  • Narimatsu H, Kimata K, Yada T, Sato T, Goto M (2007) Chondroitin synthase and nucleic acid encoding the enzyme. United States Patent 7(232):676

    Google Scholar 

  • Ninomiya T, Sugiura N, Tawada A, Sugimoto K, Watanabe H, Kimata K (2002) Molecular cloning and characterization of chondroitin polymerase from Escherichia coli strain K4. J Biol Chem 277:21567–21575. doi:10.1074/jbc.M201719200

    Article  CAS  Google Scholar 

  • Osawa T, Sugiura N, Shimada H, Hirooka R, Tsuji A, Shirakawa T, Fukuyama K, Kimura M, Kimata K, Kakuta Y (2009) Crystal structure of chondroitin polymerase from Escherichia coli K4. Biochem Biophys Res Commun 378:10–14. doi:10.1016/j.bbrc.2008.08.121

    Article  CAS  Google Scholar 

  • Petrucci F, Zoppetti G, Oreste P, Cipolletti G (2001) Process for the preparation of the polysaccharides K4 and K5 from Escherichia coli. WO0102597 (A1)

  • Pothacharoen P, Siriaunkgul S, Ong-Chai S, Supabandhu J, Kumja P, Wanaphirak C, Sugahara K, Hardingham T, Kongtawelert P (2006) Raised Serum Chondroitin Sulfate Epitope Level in Ovarian Epithelial Cancer. J Biochem 140(4):517–524. doi:10.1093/jb/mvj181

    Article  CAS  Google Scholar 

  • Prydz K, Dalen KT (2000) Synthesis and sorting of proteoglycans. J Cell Sci 113:193–205

    CAS  Google Scholar 

  • Pumphrey CY, Theus AM, Li S, Parrish RS, Sanderson RD (2002) Neoglycans, carbodiimide-modified glycosaminoglycans:a new class of anticancer agents that inhibit cancer cell proliferation and induce apoptosis. Cancer Res 62(13):3722–3728

    CAS  Google Scholar 

  • Rimler RB (1994) Presumptive identification of Pasteurella multocida serogroups A, D and F by capsule depolymerisation with mucopolysaccharidases. Vet Rec 134(8):191–192

    CAS  Google Scholar 

  • Rimler RB, Register KB, Magyar T, Ackermann MR (1995) Influence of chondroitinase on indirect hemagglutination titers and phagocytosis of Pasteurella multocida serogroups A, D and F. Vet Microbiol 47:287–294

    Article  CAS  Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsulated polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315. doi:10.1146/annurev.micro.50.1.285

    Article  CAS  Google Scholar 

  • Roberts IS, Mountford R, Hodge R, Jann KB, Boulnois GJ (1988) Common organization of gene clusters for production of different capsular polysaccharides (K antigens) in Escherichia coli. J Bacteriol 170:1305–1310

    CAS  Google Scholar 

  • Rodriguez ML, Jann B, Jann K (1988) Structure and serological characteristics of the capsular K4 antigen of Escherichia coli O5:K4:H4, a fructose-containing polysaccharide with a chondroitin backbone. Eur J Biochem 177:117–124

    Article  CAS  Google Scholar 

  • Rolls A, Avidan H, Cahalon L, Shori H, Bakalash S, Litvak V, Lev S, Lider O, Schwartz M (2004) A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice. Eur J Neurosci 20(8):1973–1983. doi:10.1111/j.1460-9568.2004.03676.x

    Article  Google Scholar 

  • Ronca F, Palmieri L, Panicucci P, Ronca G (1998) Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage 6(Suppl A):14–21

    Article  Google Scholar 

  • Rosner H, Grimmecke HD, Knirel YA, Shashkov AS (1992) Hyaluronic acid and a (1–4)-beta-D-xylan, extracellular polysaccharides of Pasteurella multocida (Carter type A) strain 880. Carbohydr Res 223:329–333

    Article  CAS  Google Scholar 

  • Sakko AJ, Butler MS, Byers S, Reinboth BJ, Stahl J, Kench JG, Horvath LG, Sutherland RL, Stricker PD, Henshall SM, Marshall VR, Tilley WD, Horsfall DJ, Ricciardelli C (2008) Immunohistochemical level of unsulfated Chondroitin disaccharides in the cancer stroma is an independent predictor of prostate cancer relapse. Cancer Epidemiol Biomark Prev 17:2488–2497

    Article  CAS  Google Scholar 

  • Silbert JE, Sugumaran G (2002) Biosynthesis of chondroitin/dermatan sulfate. IUBMB Life 54(4):177–186. doi:10.1080/15216540214923

    Article  CAS  Google Scholar 

  • Smetsers TF, van de Westerlo EM, ten Dam GB, Overes IM, Schalkwijik J, van Muijen GN, van Kuppevelt TH (2004) Human single-chain antibodies reactive with native chondroitin sulphate detect chondroitin sulphate alterations in melanoma and psoriasis. J Invest Dermatol 122(3):701–716

    Article  Google Scholar 

  • Smith AN, Boulnois GJ, Roberts IS (1990) Molecular analysis of the Escherichia coli K5 kps locus: identification and characterization of an inner-membrane capsular polysaccharide transport system. Mol Microbiol 4:1863–1869

    Article  CAS  Google Scholar 

  • Sugiugura N, Koji K (2009) Novel process for preparation of chondroitin fraction. United States Patent 2009/0155851

  • Sutherland IW (1988) Bacterial surface polysaccharide: structure and function. Int Rev Cytol 113:187–231

    Article  CAS  Google Scholar 

  • Suzuki K (2008) Chondroitin producing bacterium and method of producing chondroitin. PCT WO 2008/13350 A1

  • Tadashi E (2005) Sodium Chondroitin sulfat, chondroitin sulfat containing materila and processes for producing the same. European Patent Application EP1557472

  • Townsend KM, Boyce JD, Chung JY, Frost AJ, Adler B (2001) Genetic organization of Pasteurella multocida cap Loci and development of a multiplex capsular PCR typing system. J Clin Microbiol 39(3):924–929. doi:10.1128/JCM.39.3.924-929.2001

    Article  CAS  Google Scholar 

  • Toyoki Y, Yoshihara S, Sasaki M, Konn M (1997) Characterization of glycosaminoglycans in regenerating canine liver. J Hepatol 26(5):1135–1140

    Article  CAS  Google Scholar 

  • Volpi N (2002) Oral bioavailability of chondroitin sulfate (Condrosulf) and its constituents in healthy male volunteers. Osteoarthritis Cartilage 10(10):768–777

    Article  CAS  Google Scholar 

  • Volpi N (2009) Quality of different chondroitin sulphate preparations in relation to their therapeutic activity. J Pharm Pharmac 1271-1277. doi:10.1211/jpp/61.10.0002

  • Volpi N (2010) High-performance liquid chromatography and on-line mass spectrometry detection for the analysis of chondroitin sulfates/hyaluronan disaccharides derivatized with 2-aminoacridone. Anal Biochem 397(1):12–23. doi:10.1016/j.ab.2009.09.030

    Article  CAS  Google Scholar 

  • Wang TW, Sun JS, Wu HC, Tsuang YH, Wang W, Lin FH (2006) The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 27:5689–5697

    Article  CAS  Google Scholar 

  • Wessels MR, Goldberg JB, Moses AE, DiCesare TJ (1994) Effects on virulence of mutations in a locus essential for hyaluronic acid capsule expression in Group A streptococci. Infect Immun 62:433–441

    CAS  Google Scholar 

  • Whitfield C (2006) Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75:39–68. doi:10.1146/annurev.biochem.75.103004.142545

    Article  CAS  Google Scholar 

  • Whitfield C, Roberts IS (1999) Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol Microbiol 31:1307–1320

    Article  CAS  Google Scholar 

  • Yamada S, Sugahara K (2008) Potential therapeutic application of chondroitin sulfate/dermatan sulphate. Curr Drug Discov Technol 5(4):289–301

    Article  CAS  Google Scholar 

  • Yamada T, Ohtake S, Sato M, Habuchi O (2004) Chondroitin 4-sulphotransferase-1 and chondroitin 6-sulphotransferase-1 are affected differently by uronic acid residues neighbouring the acceptor GalNAc residues. Biochem J 15;384(Pt 3):567-75. doi:10.1042/BJ20040965

    Google Scholar 

  • Yamaguchi K, Tamaki H, Fukui S (2006) Detection of oligosaccharide ligands for hepatocyte growth factor/scatter factor (HGF/SF), keratinocyte growth factor (KGF/FGF-7), RANTES and heparin cofactor II by neoglycolipid microarrays of glycosaminoglycan-derived oligosaccharide fragments. Glycoconj J 23(7–8), 513–523

    Google Scholar 

  • Zoppetti G, Oreste P (2004) Process for the preparation of chondroitin sulfates from K4 polysaccharide and obtained products. United States Patent 6(777):398

    Google Scholar 

  • Zoppetti G, Pasqua O, Cipolletti G (2001) O-sulfated bacterial polysaccharides. United States Patent 6,288,044

  • Zou XH, Foong WC, Cao T, Bay BH, Wand OH, Yip GW (2004) Chondroitin Sulfate in Palatal Wound Healing. J Dent Res 83(11):880–885. doi:10.1177/154405910408301111

    Article  CAS  Google Scholar 

  • Zou XH, Jiang YZ, Zhang GR, Jin HM, Nguyen TM, Ouyang HW (2009) Specific interactions between human fibroblasts and particular chondroitin sulfate molecules for wound healing. Acta Biomater 5(5):1588–1595. doi:10.1016/j.actbio.2008.12.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Schiraldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schiraldi, C., Cimini, D. & De Rosa, M. Production of chondroitin sulfate and chondroitin. Appl Microbiol Biotechnol 87, 1209–1220 (2010). https://doi.org/10.1007/s00253-010-2677-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2677-1

Keywords

Navigation