Skip to main content
Log in

Photoinactivation effects of hematoporphyrin monomethyl ether on Gram-positive and -negative bacteria detected by atomic force microscopy

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The photodynamic antimicrobial chemotherapy as a promising approach for efficiently killing pathogenic microbes is attracting increasing interest. In this study, the cytotoxic and phototoxic effects of hematoporphyrin monomethyl ether (HMME) on the Gram-positive and Gram-negative bacteria were investigated. The cell viability was assessed by colony-forming unit method, and the results indicated that there was no significant cytotoxicity but high phototoxicity in the examined concentrations. Notably, the Gram-positive bacteria were more sensitive to HMME in phototoxicity. Simultaneously, an atomic force microscope (AFM) was used to detect the changes in morphological and nanomechanical properties of bacteria before and after HMME treatment. AFM images indicate that upon photoinactivation, the bacterial surface changed from a smooth, homogeneous architecture to a heterogenous, crackled morphology. The force spectroscopy measurements reveal that the cell wall became less rigid and the Young’s modulus decreased about 50%, whereas the tip-cell-surface adhesion forces increased significantly compared to those of native cells. It was speculated that the photodynamic effects of HMME induced the changes in the chemical composition of the outer membrane and exposure of some proteins inside the envelope. AFM can be utilized as a powerful and sensitive method for studying the interaction between bacteria and drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ban S, Caruso E, Bucca L (2006) Antibacterial activity of tetraaryl-porphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria. J Photochem Photobiol B Biol 85:28–38

    Article  Google Scholar 

  • Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  CAS  Google Scholar 

  • Bolshakova AV, Kiselyova OI, Yaminsky IV (2004) Microbial surfaces investigated using atomic force microscopy. Biotechnol Prog 20:1615–1622

    Article  CAS  Google Scholar 

  • Bradley DE, Dewar CA (1967) Intracellular changes in cells of Escherichia coli infected with a filamentous bacteriophage. J Gen Virol 1:179–188

    Article  CAS  Google Scholar 

  • Carvalho CM, Gomes AT, Fernandes SC, Prata AC, Almeida MA, Cunha MA, Tomé JP, Faustino MA, Neves MG, Tomé AC, Cavaleiro JA, Lin Z, Rainho JP, Rocha J (2007) Photoinactivation of bacteria in wastewater by porphyrins: Bacterial b-galactosidase activity and leucine-uptake as methods to monitor the process. J Photochem Photobiol B Biol 88:112–118

    Article  CAS  Google Scholar 

  • Chen YY, Wu CC, Hsu JL, Peng HL, Chang HY, Yew TR (2009) Surface rigidity change of Escherichia coli after filamentous bacteriophage infection. Langmuir 25:4607–4614

    Article  CAS  Google Scholar 

  • Cross SE, Jin YS, Rao JY, Gimzewski JK (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  CAS  Google Scholar 

  • Dahl TA, Midden WR, Hartman PE (1989) Comparison of killing of gram-negative and Gram-positive bacteria by pure singlet oxygent. J Bacteriol 171:2188–2194

    CAS  Google Scholar 

  • Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    Article  CAS  Google Scholar 

  • Ding X, Xu Q, Liu F, Zhou P, Gu Y, Zeng J, An J, Dai W, Li X (2004) Hematoporphyrin monomethyl ether photodynamic damage on HeLa cells by means of reactive oxygen species production and cytosolic free calcium concentration elevation. Cancer Lett 216:43–54

    Article  CAS  Google Scholar 

  • Dubrovin EV, Voloshin AG, Kraevsky SV, Ignatyuk TE, Abramchuk SS, Yaminsky IV, Ignatov SG (2008) Atomic force microscopy investigation of phage infection of bacteria. Langmuir 24:13068–13074

    Article  CAS  Google Scholar 

  • Dufrêne YF (2002) Atomic force microscopy, a powerful tool in microbiology. J Bacteriol 184:5205–5213

    Article  Google Scholar 

  • Geiger B (2001) Cell biology: encounters in space. Science 294:1661–1663

    Article  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–1033

    Article  CAS  Google Scholar 

  • Goossens H, Ferech M, Vander SR, Elseviers M, ESAC Project Group (2005) Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365:579–587

    Google Scholar 

  • Hamblin MR, O’Donnell DA, Murthy N, Rajagopalan K, Michaud N, Sherwood ME, Hasan T (2002) Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J Antimicrob Chemother 49:941–951

    Article  CAS  Google Scholar 

  • Hinterdorfer P, Dufrêne YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  CAS  Google Scholar 

  • Jori G, Brown SB (2004) Photosensitized inactivation of microorganisms. Photochem Photobiol Sci 3:403–405

    Article  CAS  Google Scholar 

  • Kailas L, Ratcliffe EC, Hayhurst EJ, Walker MG, Foster SJ, Hobbs JK (2009) Immobilizing live bacteria for AFM imaging of cellular processes. Ultramicroscopy 109:775–780

    Article  CAS  Google Scholar 

  • Laney DE, Garcia RA, Parsons SM, Hansma HG (1997) Changes in the elastic properties of cholinergic synaptic vesicles as measured by atomic force microscopy. Biophys J 72:806–813

    Article  CAS  Google Scholar 

  • Li P, Sun JG, Huang CR, Pan GY, Xu MJ, Li J, Wang GJ (2006) Development and validation of a sensitive quantification method for hematoporphyrin monomethyl ether in plasma using high-performance liquid chromatography with fluorescence detection and Ji-ning Tao3 Development and validation of a sensitive quantification method for hematoporphyrin monomethyl ether in plasma using high-performance liquid chromatography with fluorescence detection. Biomed Chromatogr 20:1277–1282

    Article  CAS  Google Scholar 

  • Liang XM, Mao GZ, Simon Ng KY (2004) Probing small unilamellar EggPC vesicles on mica surface by atomic force microscopy. Colloids surf B Biointerfaces 34:41–51

    Article  CAS  Google Scholar 

  • Michael RH, Tayyaba H (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3:436–450

    Article  Google Scholar 

  • Moan J, Peng Q (2003) An outline of the hundred-year history of PDT. Anticancer Res 23:3591–3600

    Google Scholar 

  • Nitzan Y, Gutterman M, Malik Z, Ehrenberg B (1992) Inactivation of Gram-negative bacteria by photosensitized porphyrins. Photochem Photobiol 55:89–96

    Article  CAS  Google Scholar 

  • Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 305:1147–1150

    Article  CAS  Google Scholar 

  • Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68:67–90

    Article  Google Scholar 

  • Song K, Kong B, Li L, Yang Q, Wei Y, Qu X (2007) Intraperitoneal photodynamic therapy for an ovarian cancer ascite model in Fischer 344 rat using hematoporphyrin monomethyl ether. Cancer Sci 98:1959–1964

    Article  CAS  Google Scholar 

  • Stolz M, Raiteri R, Daniels AU, VanLandingham MR, Baschong W, Aebi U (2004) Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 86:3269–3283

    Article  CAS  Google Scholar 

  • Stolz M, Gottardi R, Raiteri R, Miot S, Martin I, Imer R, Staufer U, Raducanu A, Düggelin M, Baschong W, Daniels AU, Friederich NF, Aszodi A, Aebi U (2009) Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat Nanotechnol 4:144–145

    Article  Google Scholar 

  • Szpakowska M, Reiss J, Graczyk A, Szmigielski S, Lasocki K, Grzybowski J (1997) Susceptibility of Pseudomonas aeruginosa to a photodynamic effect of the arginine hematoporphyrin derivative. Int J Antimicrob Agents 8:23–27

    Article  CAS  Google Scholar 

  • Tang J, Ebner A, Badelt-Lichtblau H, Völlenkle C, Rankl C, Kraxberger B, Leitner M, Wildling L, Gruber HJ, Sleytr UB, Ilk N, Hinterdorfer P (2008) Recognition imaging and highly ordered molecular templating of bacterial s-layer nanoarrays containing affinity-tags. Nano Lett 8:4312–4319

    Article  CAS  Google Scholar 

  • Tsubery H, Ofek I, Cohen S, Fridkin M (2000) Structure-function studies of polymyxin B nonapeptide: implications to sensitization of Gramnegative bacteria. J Med Chem 43:3085–3092

    Article  CAS  Google Scholar 

  • Vadillo-Rodriguez V, Dutcher JR (2008) Surface viscoelasticity of individual gram-negative bacterial cells measured using atomic force microscopy. J Bacteriol 190:4225–4232

    Article  CAS  Google Scholar 

  • Wainwright M (1998) Photodynamic antimicrobial chemotherapy. J Antimicrob Chemother 42:13–28

    Article  CAS  Google Scholar 

  • Xu DY, Chen WH, Zhang H, Shen NC (1993) Hematoporphyrin 3- or 8- monomethyl ether: a promising candidate for tumor photodynamic therapy. J Med Coll PLA 8:406–409

    CAS  Google Scholar 

Download references

Acknowledgment

We express our thanks to Prof. Guanqun Yang (The First Affiliated Hospital, Jinan University, China) and Zhihong Liang (Analytical & Testing Center, Jinan University, China) for their help and heated discussion. This work was funded by the grants from China’s Guangzhou National Science Foundation (021190, 2003Z3-D2041) and National Natural Science Foundation of China (973 program projects, 2010CB833603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiye Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Huang, X., Chen, Y. et al. Photoinactivation effects of hematoporphyrin monomethyl ether on Gram-positive and -negative bacteria detected by atomic force microscopy. Appl Microbiol Biotechnol 88, 761–770 (2010). https://doi.org/10.1007/s00253-010-2747-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2747-4

Keywords

Navigation