Skip to main content
Log in

High-level expression of a specific β-1,3-1,4-glucanase from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a novel β-1,3-1,4-glucanase gene (designated as PtLic16A) from Paecilomyces thermophila was cloned and sequenced. PtLic16A has an open reading frame of 945 bp, encoding 314 amino acids. The deduced amino acid sequence shares the highest identity (61%) with the putative endo-1,3(4)-β-glucanase from Neosartorya fischeri NRRL 181. PtLic16A was cloned into a vector pPIC9K and was expressed successfully in Pichia pastoris as active extracellular β-1,3-1,4-glucanase. The recombinant β-1,3-1,4-glucanase (PtLic16A) was secreted predominantly into the medium which comprised up to 85% of the total extracellular proteins and reached a protein concentration of 9.1 g l−1 with an activity of 55,300 U ml−1 in 5-l fermentor culture. The enzyme was then purified using two steps, ion exchange chromatography, and gel filtration chromatography. The purified enzyme had a molecular mass of 38.5 kDa on SDS–PAGE. It was optimally active at pH 7.0 and a temperature of 70°C. Furthermore, the enzyme exhibited strict specificity for β-1,3-1,4-d-glucans. This is the first report on the cloning and expression of a β-1,3-1,4-glucanase gene from Paecilomyces sp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bang ML, Villadsen I, Sandal T (1999) Cloning and characterization of an endo-β-1, 3(4)glucanase and an aspartic protease from Phaffia rhodozyma CBS 6938. Appl Microbiol Biotechnol 51(2):215–222

    Article  CAS  Google Scholar 

  • Bauer MW, Driskill LE, Callen W, Snead MA, Mathur EJ, Kelly RM (1999) An endoglucanase, EglA, from the hyperthermophilic archaeon Pyrococcus furiosus hydrolyzes β-1, 4 bonds in mixed-linkage (1 → 3), (1 → 4)-β-D-glucans and cellulose. J Bacteriol 181(1):284–290

    CAS  Google Scholar 

  • Bischoff KM, Rooney AP, Li XL, Liu S, Hughes SR (2006) Purification and characterization of a family 5 endoglucanase from a moderately thermophilic strain of Bacillus licheniformis. Biotechnol Lett 28(21):1761–1765

    Article  CAS  Google Scholar 

  • Celestino KR, Cunha RB, Felix CR (2006) Characterization of a β-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry. BMC Biochem 7:23

    Article  Google Scholar 

  • Cereghin JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    Article  Google Scholar 

  • Chen H, Li XL, Ljungdahl LG (1997) Sequencing of a 1, 3–1, 4-β-D-glucanase (lichenase) from the anaerobic fungus Orpinomyces strain PC-2: properties of the enzyme expressed in Escherichia coli and evidence that the gene has a bacterial origin. J Bacteriol 179:6028–6034

    CAS  Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18(2):119–138

    Article  CAS  Google Scholar 

  • Ekinci MS, McCrae SI, Flint HJ (1997) Isolation and overexpression of a gene encoding an extracellular β-(1, 3–1, 4)-glucanase from Streptococcus bovis JB1. Appl Environ Microbiol 63:3752–3756

    CAS  Google Scholar 

  • Fu LL, Xu ZR, Shuai JB, Hu CX, Dai W, Li WF (2008) High-level secretion of a chimeric thermostable lichenase from Bacillus subtilis by screening of site-mutated signal peptides with structural alterations. Curr Microbiol 56(3):287–292

    Article  CAS  Google Scholar 

  • Gaiser OJ, Piotukh K, Ponnuswamy MN, Planas A, Borriss R, Heinemann U (2006) Structural basis for the substrate specificity of a Bacillus 1, 3–1, 4-β-glucanase. J Mol Biol 357:1211–1225

    Article  CAS  Google Scholar 

  • Görlach JM, van der Knaap E, Walton JD (1998) Cloning and targeted disruption of MLG1, a gene encoding two of three extracellular mixed-linked glucanases of Cochliobolus carbonum. Appl Environ Microbiol 64:385–391

    Google Scholar 

  • Grishutin SG, Gusakov AV, Dzedzyulya EI, Sinitsyn AP (2006) A lichenase-like family 12 endo-(1, 4)-β-glucanase from Aspergillus japonicus: study of the substrate specificity and mode of action on β-glucans in comparison with other glycoside hydrolases. Carbohydr Res 341:218–229

    Article  CAS  Google Scholar 

  • Huang H, Yang P, Luo H, Tang H, Shao N, Yuan T, Wang Y, Bai Y, Yao B (2008) High-level expression of a truncated 1, 3–1, 4-β-D-glucanase from Fibrobacter succinogenes in Pichia pastoris by optimization of codons and fermentation. Appl Microbiol Biotechnol 78(1):95–103

    Article  CAS  Google Scholar 

  • Kawai R, Igarashi K, Yoshida M, Kitaoka M, Samejima M (2006) Hydrolysis of β-1, 3/1, 6-glucan by glycoside hydrolase family 16 endo-1, 3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 71(6):898–906

    Article  CAS  Google Scholar 

  • Kitamura E, Kamei Y (2006) Molecular cloning of the gene encoding β-1, 3(4)-glucanase A from a marine bacterium, Pseudomonas sp. PE2, an essential enzyme for the degradation of Pythium porphyrae cell walls. Appl Microbiol Biotechnol 71(5):630–637

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Luo H, Yang J, Yang P, Li J, Huang H, Shi P, Bai Y, Wang Y, Fan Y, Yao B (2010) Gene cloning and expression of a new acidic family 7 endo-β-1, 3–1, 4-glucanase from the acidophilic fungus Bispora sp. MEY-1. Appl Microbiol Biotechnol 85(4):1015–1023

    Article  CAS  Google Scholar 

  • Mansur M, Cabello C, Hernández L, País J, Varas L, Valdés J, Terrero Y, Hidalgo A, Plana L, Besada V, García L, Lamazares E, Castellanos L, Martínez E (2005) Multiple gene copy number enhances insulin precursor secretion in the yeast Pichia pastoris. Biotechnol Lett 27:339–345

    Article  CAS  Google Scholar 

  • McCleary BV (1988) Purification of 1–3, 1–4-β-D-glucan from barley flour. Meth Enzymol 160:511–514

    Article  CAS  Google Scholar 

  • Mchunu NP, Singh S, Permaul K (2009) Expression of an alkalo-tolerant fungal xylanase enhanced by directed evolution in Pichia pastoris and Escherichia coli. J Biotechnol 141(1–2):26–30

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Murray PG, Grassick A, Laffey CD, Cuffe MM, Higgins T, Savage AV, Planas A, Tuohy MG (2001) Isolation and characterization of a thermostable endo-β-glucanase active on 1, 3–1, 4-β-D-glucans from the aerobic fungus Talaromyces emersonii CBS 814.70. Enzyme Microb Technol 29:90–98

    Article  CAS  Google Scholar 

  • Planas A (2000) Bacterial 1, 3–1, 4-β-glucanases: structure, function and protein engineering. Biochim Biophys Acta 1543:361–382

    CAS  Google Scholar 

  • Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucl Acids Res 31(13):3763–3766

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Schimming S, Schwarz WH (1991) Properties of a thermoactive β-1, 3–1, 4-glucanase (Lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochem Biophys Res Commun 177:447–452

    Article  CAS  Google Scholar 

  • Scorer CA, Clare JJ, McCombie WR, Romanos MA, Sreekrishna K (1994) Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnol NY 12(2):181–184

    Article  CAS  Google Scholar 

  • Sue MP, Mariana LF, Brian M, Linda MH (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  Google Scholar 

  • Teather RM, Erfle JD (1990) DNA sequence of a Fibrobacter succinogenes mixed-linkage 3-glucanase (1, 3–1, 4-β-D-glucan 4-glucanohydrolase) gene. J Bacteriol 172:3837–3841

    CAS  Google Scholar 

  • Teng D, Fan Y, Yang Y, Tian Z, Luo J, Wang J (2007) Codon optimization of Bacillus licheniformis β-1, 3–1, 4-glucanase gene and its expression in Pichia pastoris. Appl Microbiol Biotechnol 74:1074–1083

    Article  CAS  Google Scholar 

  • Vassileva A, Chugh DA, Swaminathan S, Khanna N (2001) Effect of copy number on the expression levels of hepatitis B surface antigen in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 21:71–80

    Article  CAS  Google Scholar 

  • Vasur J, Kawai R, Andersson E, Igarashi K, Sandgren M, Samejima M, Ståhlberg J (2009) X-ray crystal structures of Phanerochaete chrysosporium Laminarinase 16A in complex with products from lichenin and laminarin hydrolysis. FEBS J 276:3858–3869

    Article  CAS  Google Scholar 

  • Wang JL, Ruan H, Zhang HF, Zhang Q, Zhang HB, He GQ, Shen SR (2007) Characterization of a thermostable and acidic-tolerable β-glucanase from aerobic fungi Trichoderma koningii ZJU-T. J Food Sci 72:C452–C456

    Article  CAS  Google Scholar 

  • Wen TN, Chen JL, Lee SH, Yang NS, Shyur LF (2005) A truncated Fibrobacter succinogenes 1, 3–1, 4-β-D-glucanase with improved enzymatic activity and thermotolerance. Biochemistry 44:9197–9205

    Article  CAS  Google Scholar 

  • Xiong A-S, Yao Q-H, Peng R-H, Han P-L, Cheng Z-M, Li Y (2005) High level expression of a recombinant acid phytase gene in Pichia pastoris. J Appl Microbiol 98(2):418–428

    Article  CAS  Google Scholar 

  • Yaish M, Doxey A, McConkey B, Moffatt B, Griffith M (2006) Coldactive winter rye glucanases with ice-binding capacity. Plant Physiol 141:1459–1472

    Article  CAS  Google Scholar 

  • Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM, Wang YZ (2006) High-level of xylanase production by the thermophilic Paecilomyces thermophila J18 on wheat straw in solid-state fermentation. Bioresour Technol 97:1794–1800

    Article  CAS  Google Scholar 

  • Yang P, Shi P, Wang Y, Bai Y, Meng K, Luo H, Yuan T, Yao B (2007) Cloning and overexpression of a Paenibacillus β-glucanase in Pichia pastoris: purification and characterization of the recombinant enzyme. J Microbiol Biotechnol 17:58–66

    Google Scholar 

  • Yang SQ, Yan QJ, Jiang ZQ, Fan GS, Wang L (2008) Biochemical characterization of a thermostable novel β-1, 3–1, 4-glucanase (lichenase) from Paecilomyces thermophila. J Agric Food Chem 56(13):5345–5351

    Article  CAS  Google Scholar 

  • Yaoi K, Mitsuishi Y (2004) Purification, characterization, cDNA cloning, and expression of a xyloglucan endoglucanase from Geotrichum sp. M128. FEBS Lett 560(1–3):45–50

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Program for the National Natural Science Foundation of China and New Century Excellent Talents in University (NCET-08-0534).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, C., Yan, Q., Jiang, Z. et al. High-level expression of a specific β-1,3-1,4-glucanase from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris . Appl Microbiol Biotechnol 88, 509–518 (2010). https://doi.org/10.1007/s00253-010-2759-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2759-0

Keywords

Navigation