Skip to main content

Advertisement

Log in

Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulosic materials are the most abundant renewable organic resources (~200 billion tons annually) on earth that are readily available for conversion to ethanol and other value-added products, but they have not yet been tapped for the commercial production of fuel ethanol. The lignocellulosic substrates include woody substrates such as hardwood (birch and aspen, etc.) and softwood (spruce and pine, etc.), agro residues (wheat straw, sugarcane bagasse, corn stover, etc.), dedicated energy crops (switch grass, and Miscanthus etc.), weedy materials (Eicchornia crassipes, Lantana camara etc.), and municipal solid waste (food and kitchen waste, etc.). Despite the success achieved in the laboratory, there are limitations to success with lignocellulosic substrates on a commercial scale. The future of lignocellulosics is expected to lie in improvements of plant biomass, metabolic engineering of ethanol, and cellulolytic enzyme-producing microorganisms, fullest exploitation of weed materials, and process integration of the individual steps involved in bioethanol production. Issues related to the chemical composition of various weedy raw substrates for bioethanol formation, including chemical composition-based structural hydrolysis of the substrate, need special attention. This area could be opened up further by exploring genetically modified metabolic engineering routes in weedy materials and in biocatalysts that would make the production of bioethanol more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ackerson MD, Clausen EC, Gaddy JL (1991) Production of ethanol from MSW via concentrated acid hydrolysis of the lignocellulosic fraction. In: Klass DL (ed) Energy from biomass wastes Vol.XV. Institute of Gas Technology, Chicago, IL, pp 725–743

    Google Scholar 

  • Agbogbo FK, Wenger KS (2007) Production of ethanol from corn stover hemicelluloses hydrolysate using Pichia stipitis. J Ind Microb Biotechnol 34:723–727

    Article  CAS  Google Scholar 

  • Alam MZ, Mamun AA, Qudsieh IY, Muyibi SA, Salleh HM, Omar NM (2009) Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem Eng J 46(1):61–64

    Article  CAS  Google Scholar 

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  Google Scholar 

  • Alriksson B, Rose SH, van Zyl WH, Sjöde A, Nilvebrant NO, Jönsson LJ (2009) Cellulase Production from spent lignocellulose hydrolysates by recombinant Aspergillus niger. Appl Environ Microbiol 75:2366–2374

    Article  CAS  Google Scholar 

  • Arifeen N, Wang R, Kookos I, Webb C, Koutinas AA (2009) Optimization and cost estimation of novel wheat bio-refining for continuous production of fermentation feedstock. Biotechnol Prog 23:872–880

    Google Scholar 

  • Bajwa PK, Pinel D, Martin VJJ, Trevors JT, Lee H (2010) Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling. J Microbiol Methods 81:179–186

    Article  CAS  Google Scholar 

  • Bak JS, Kim MD, Choi IG, Kim KH (2010) Biological pretreatment of rice straw by fermenting with Dichomitus squalens. N Biotechnol 30:424–434

    Article  CAS  Google Scholar 

  • Banerjee S, Mudliar S, Sen R, Giri B, Satpude D, Chakrabarti T, Pandey RA (2010) Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels Bioprod Bioref 4:77–93

    Article  CAS  Google Scholar 

  • Barbosa MF, Beck MJ, Fein JE, Potts D, Ingram LO (1992) Efficient fermentation of Pinus sp. acid hydrolysates by an ethanologenic strain of Escherichia coli. Appl Environ Microbiol 58:1382–1384

    CAS  Google Scholar 

  • Betts WB, Dart RK, Ball AS, Pedlar SL (1991) Biosynthesis and structure of lignocellulose. In: Betts WB (ed) Biodegradation: natural and synthetic materials. Springer, Berlin, Germany, pp 139–155

    Google Scholar 

  • Biswas GCG, Ransom C, Sticklen M (2006) Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants. Plant Sci 171:617–623

    Article  CAS  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinho PM, Henrissat B, Nelson KE, White BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci 106:1948–1953

    Article  CAS  Google Scholar 

  • Camassola M, Dillon AJP (2008) Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Indus Crops Prod 29:642–647

    Article  CAS  Google Scholar 

  • Chandel AK, Chan EC, Rudravaram R, Narasu ML, Rao LV, Ravindra P (2007a) Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol Mol Biol Rev 2:14–32

    Google Scholar 

  • Chandel AK, Kapoor RK, Singh AK, Kuhad RC (2007b) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Biores Technol 98:1947–1950

    Article  CAS  Google Scholar 

  • Chandel AK, Narasu ML, Rudravaram R, Ravindra P, Narasu ML, Rao LV (2009a) Bioconversion of de-oiled rice bran (DORB) hemicellulosic hydrolysate into ethanol by Pichia stipitis NCIM3499 under optimized conditions. Int J Food Eng 2:1–12

    Google Scholar 

  • Chandel AK, Narasu ML, Chandrasekhar G, Manikeyam A, Rao LV (2009b) Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3. Biores Technol 100:2404–2410

    Article  CAS  Google Scholar 

  • Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML (2010a) Key-drivers influencing the commercialization of ethanol based biorefineries. J Comm Biotechnol 16:239–257

    Article  Google Scholar 

  • Chandel AK, Singh OV, Rao LV (2010b) Biotechnological applications of hemicellulosic derived sugars: state-of-the-art. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: renewable resources and new perspectives. Springer, Netherland, pp 63–81

    Google Scholar 

  • Chandel AK, Singh OV, Chandrasekhar G, Rao LV, Narasu ML (2010c) Bioconversion of novel substrate, Saccharum spontaneum, a weedy material into ethanol by Pichia stipitis NCIM3498. Biores Technol. doi:10.1016/j.biotech.2010.08.016

    Google Scholar 

  • Chandra M, Kalra A, Sangwan NS, Gaurav SS, Darokar MP, Sangwan RS (2009a) Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases. Biores Technol 100:1659–1662

    Article  CAS  Google Scholar 

  • Chandra RP, Ewanick SM, Chung PA, Au-Yeung K, Del Rio L, Mabee W, Saddler JN (2009b) Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnol Lett 31:1217–1222

    Article  CAS  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  CAS  Google Scholar 

  • Desai SG, Guerinot ML, Lynd LR (2004) Cloning of the l-lactate dehydrogenase gene and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol 65:600–605

    Article  CAS  Google Scholar 

  • Dien BS, Iten LB, Skory CD (2005) Converting herbaceous energy crops to bioethanol; a review with emphasis on pretreatment processes. In: Hou CT (ed) Handbook of industrial biocatalysis, Chapter 23. Taylor and Francis, Boca Raton, FL, pp 1–11

    Google Scholar 

  • Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D (2009) Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crops Prod 29:404–411

    Article  CAS  Google Scholar 

  • Endo A, Nakamura T, Ando A, Tokuyasu K, Shima J (2008) Genome-wide screening of the genes required for tolerance to vanillin, which is a potential inhibitor of bioethanol fermentation in Saccharomyces cerevisiae. Biotechnol Biofuels 1:3

    Article  CAS  Google Scholar 

  • Everitt JH, Lonard RL, Little CR (2007) Weeds in South Texas and Northern Mexico. Texas Tech University Press, Lubbock

    Google Scholar 

  • Farrell A, Plevin R, Turner B, Jones A, O'Hare M, Kammen D (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  CAS  Google Scholar 

  • Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis NCIM 3498. Biores Technol 100:1214–1220

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  CAS  Google Scholar 

  • Harris D, Stork J, Debolt H (2009) Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. Glob Change Biol Bioener 1:51–61

    CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Nat Acad Sci 103:11206–11210

    Article  CAS  Google Scholar 

  • Himmel ME, Beyer EA (2009) Lignocellulose conversion to biofuels: current challenges, global perspectives. Curr Opin Biotechnol 20:316–317

    Article  CAS  Google Scholar 

  • Hinman ND, Schell DJ, Riley CJ, Bergeron PW, Walter PJ (1992) Preliminary estimate of the cost of ethanol production for SSF technology. Appl Biochem Biotechnol 34(35):639–649

    Article  Google Scholar 

  • Huber GW, Dale BE (2009) Grassoline at the pump. Sci Am Ind 4:40–45

    Google Scholar 

  • Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326

    Article  CAS  Google Scholar 

  • Jin YS, Alper H, Yang YT, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccaromyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71:8249–8256

    Article  CAS  Google Scholar 

  • Jobling S (2004) Improving starch for food and industrial applications. Curr Opin Plant Biol 7:210–218

    Article  CAS  Google Scholar 

  • Kadam KL, Camobreco VJ, Glazebrook BE, Forrest LH, Jacobson WA, Simeroth DC, Blackburn WJ, Nehoda KC (1999) Environmental life cycle implications of fuel oxygenate production from California biomass. National Renewable Energy Laboratory: Golden, Colorado. NREL Report no. NREL/TP-580-25688

  • Katahira SA, Mizuike FH, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide- assimilating yeast strain. Appl Microbiol Biotechnol 72:1136–1143

    Article  CAS  Google Scholar 

  • Kim S, Dale EB (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Kotter P, Ciriacy M (1993) Xylose fermentation by Sacharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  • Kuhad RC, Mehta G, Gupta R, Sharma KK (2010) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34:1189–1194

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  Google Scholar 

  • Kumar A, Singh LK, Ghosh S (2009a) Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Biores Technol 100:3293–3297

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009b) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kurup SC, Snishamol C, Prabhu NG (2005) Cellulase production by native bacteria using water hyacinth as substrate under solid state fermentation. Malay J Micorbiol 1:25–29

    Google Scholar 

  • Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, Van Dijken JP, Pronk JT (2005) Metabolic engineering of a xyloseisomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409

    Article  CAS  Google Scholar 

  • Lark N, Xia Y, Qin CG, Gong CS, Tsao GT (1997) Production of ethanol from recycled paper sludge using cellulase and yeast, Kluveromyces marxianus. Biomass Bioenergy 12:135–143

    Article  CAS  Google Scholar 

  • Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170

    Article  CAS  Google Scholar 

  • Lawford HG, Rousseau JD (1991) Fuel ethanol production from hard wood hemicelluloses hydrolysate by genetically engineered Escherichia coli carrying genes from Zymomonas mobilis. Biotechnol Lett 13:191–196

    Article  CAS  Google Scholar 

  • Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  CAS  Google Scholar 

  • Lemus R, Lai R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24:1–21

    Article  CAS  Google Scholar 

  • Li W, Zhang WW, Yang MM, Chen YL (2008a) Cloning of the thermostable cellulase gene from newly isolated Bacillus subtilis and its expression in Escherichia coli. Mol Biotechnol 40:195–201

    Article  CAS  Google Scholar 

  • Li X, Weng JK, Chapple C (2008b) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  CAS  Google Scholar 

  • Liming X, Xueliang S (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Biores Technol 91:259–262

    Article  CAS  Google Scholar 

  • Lu XM, Yin WB, Hu ZM (2006) Chloroplast transformation. Methods Mol Biol 318:285–303

    CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  CAS  Google Scholar 

  • Moiser N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686

    Article  CAS  Google Scholar 

  • Morrison M, Pope PB, Denman SE, McSweeney CS (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Curr Opin Biotechnol 20:358–363

    Article  CAS  Google Scholar 

  • Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98:49–58

    Article  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mole Biol Rev 72:379–412

    Article  CAS  Google Scholar 

  • Ng TL, Eheart JW, Cai X, Miguez F (2010) Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44:7138–7144

    Article  CAS  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicelluloses hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    Article  CAS  Google Scholar 

  • Olofsson K, Palmqvist B, Lidén G (2010) Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding. Biotechnol Biofuels 3:17

    Google Scholar 

  • Olsson L, Hahn-Hagerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331

    Article  CAS  Google Scholar 

  • Olsson L, Hahn-Hagerdal B, Zacchi G (1995) Kinetics of ethanol production by recombinant Escheichia coli K011. Biotechnol Bioeng 45:356–365

    Article  CAS  Google Scholar 

  • Parawira W, Tekere M (2010) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol. doi:10.3109/07388551003757816

    Google Scholar 

  • Parrish DJ, Fike JH (2009) Selecting, establishing, and managing switch grass (Panicum virgatum) for biofuels. Methods Mol Biol 581:27–40

    Article  Google Scholar 

  • Pasha C, Valli N, Rao LV (2007) Lantana camara for fuel ethanol production using thermotolerant yeast. Lett Appl Microbiol 44:666–672

    Article  CAS  Google Scholar 

  • Perlack RD, Wright A, Turhollow R, Stokes GB, Erbach D (2005) Biomass as feedstock for a bioenergy and bio-products industry: the technical feasibility of a billion-ton annual supply. Washington, USDA. DOE/GO-102005-2135, ORNL/TM- 2005/66

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ Jr, Hallett JP, Leak DJ, Liotta CL (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci 102:16573–16578

    Article  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biomass. Nature 454:841–845

    Article  CAS  Google Scholar 

  • Sanchez RG, Karhumaa K, Fonseca C, Nogué VS, Almeida JRM, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13

    Article  CAS  Google Scholar 

  • Sarkar P, Bosneaga E, Auer M (2009) Plant cell walls throughout evolution: towards a molecular understanding of their design principles. J Exp Bot 60:3615–3635

    Article  CAS  Google Scholar 

  • Scordia D, Cosentino SL, Jeffries TW (2010) Second generation bioethanol production from Saccharum spontaneum L. ssp. aegyptiacum (Willd.) Hack. Biores Technol 101:5358–5365

    Article  CAS  Google Scholar 

  • Seo JS, Chong HY, Park HS, Yoon KO, Jung C, Kim JJ, Hong JH, Kim H, Kim JH, Kil JI, Park CJ, Oh HM, Lee JS, Jin SJ, Um HW, Lee HJ, Oh SJ, Kim JY, Kang HL, Lee SY, Lee KJ, Kang HS (2005) The genome sequence of the ethanologenic bacterium Zymomonas mobilis ZM4. Nat Biotechnol 23:63–68

    Article  CAS  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exp Bot 55:1013–1019

    Article  CAS  Google Scholar 

  • Singh OV (2010) Regulation and safety assessment of genetically engineered food. Stu Ethics Law Technol. doi:10.2202/1941-6008.1100

    Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  Google Scholar 

  • Sørensen A, Teller PJ, Hilstrøm T, Ahring BK (2008) Hydrolysis of Miscanthus for bioethanol production using dilute acid presoaking combined with wet explosion pre-treatment and enzymatic hydrolysis. Biores Technol 99:6602–6607

    Article  CAS  Google Scholar 

  • Sreenath HK, Koegel RG, Moldes AB, Jeffries TW, Straub RJ (2001) Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Proc Biochem 36:1199–1204

    Article  CAS  Google Scholar 

  • Sticklen M (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  CAS  Google Scholar 

  • Sukumaran RK, Singhania RR, Mathew GM, Pandey A (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Ren Ener 34:421–424

    Article  CAS  Google Scholar 

  • Suryawati L, Wilkins MR, Bellmer DD, Huhnke RL, Maness NO, Banat IM (2009) Effect of hydrothermolysis process conditions on pretreated switchgrass composition and ethanol yield by SSF with Kluyveromyces marxianus IMB4. Proc Biochem 44:540–545

    Article  CAS  Google Scholar 

  • Szijártó N, Faigl Z, Réczey K, Mézes M, Bersényi A (2004) Cellulase fermentation on a novel substrate (waste cardboard) and subsequent utilization of home-produced cellulase and commercial amylase in a rabbit feeding trial. Indus Crops Prod 20:49–57

    Article  CAS  Google Scholar 

  • Tabka MG, Herpoël-Gimbert I, Monod F, Asther M, Sigoillot JC (2006) Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enz Microb Technol 39:897–902

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Niklasson C, Lidén G (1999) Conversion of dilute-acid hydrolyzates of spruce and birch to ethanol by fed-batch fermentation. Biores Technol 69:59–66

    Article  CAS  Google Scholar 

  • Tilman D, Hill J, Lehman C (2007) Carbon-negative biofuels from low-input high-diversity grass and biomass. Science 314:1598–1600

    Article  CAS  Google Scholar 

  • Torney F, Moeller L, Scarpa A, Wang K (2007) Genetic engineering approaches to improve bioethanol production from maize. Curr Opin Biotechnol 18:193–199

    Article  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  Google Scholar 

  • Varshney VK, Gupta PK, Naithani S, Khullar R, Bhatt A, Soni PL (2006) Carboxy methylation of alpha-cellulose isolated from Lantana camara with respect to degree of substitution and rheological behavior. Carbohydr Polym 63:40–45

    Article  CAS  Google Scholar 

  • Vega-Sanchez ME, Ronald PC (2010) Genetic and biotechnological approaches for biofuel crop improvement. Curr Opin Biotechnol 21:218–224

    Article  CAS  Google Scholar 

  • von Sivers MV, Zacchi G, Olsson L, Hahn-Hägerdal B (1994) Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555–560

    Article  Google Scholar 

  • Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hagerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xyl A gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 12:4648–4651

    Google Scholar 

  • Wang Z, Chen X, Wang J, Liu T, Liu Y, Zhao L, Wang G (2007) Increasing maize seed weight by enhancing the cytoplasmic ADPglucose pyrophosphorylase activity in transgenic maize plants. Plant Cell Tissue Organ Cult 88:83–92

    Article  CAS  Google Scholar 

  • Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565

    Article  CAS  Google Scholar 

  • Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K (2007) Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiol 153:3044–3054

    Article  CAS  Google Scholar 

  • Wayman M, Parekh SR (1990) Biotechnology of biomass conversion; Fuels and chemicals from renewable resources. Open University Press, Milton, Keynes

    Google Scholar 

  • Wei T, Ogbon J, McCoy A (2001) Genetic engineering and lignin biosynthetic regulation in forest tree species. J Forestry Res 12:75–83

    Article  CAS  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    Article  CAS  Google Scholar 

  • Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 9:1109–1117

    Google Scholar 

  • Wiselogel A, Tyson S, Johnson D (1996) Biomass feedstock resources and composition. In: Wyman CE (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC, pp 105–118

    Google Scholar 

  • Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794–803

    Article  CAS  Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94:611–617

    Article  CAS  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2007) Comparative study on chemical pretreatment methods for improving enzymatic digestibility of Crofton weed stem. Biores Technol 99:3729–3736

    Article  CAS  Google Scholar 

  • Zhao X, Zhang L, Liu D (2010) Pretreatment of Siam weed stem by several chemical methods for increasing the enzymatic digestibility. Biotechnol J 5:493–504

    Article  CAS  Google Scholar 

  • Zhu Y, Lee YY, Elander RT (2007) Conversion of aqueous ammonia-treated corn stover to lactic acid by simultaneous saccharification and co-fermentation. Appl Biochem Biotechnol 137–140:721–738

    Article  Google Scholar 

  • Zhu JY, Zhu W, O’ Bryan PJ, Dien BS, Tian S, Gleisner R, Pan XJ (2010) Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of mass balance and process energy efficiency. Appl Microbiol Biotechnol 86:1355–1365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om V. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandel, A.K., Singh, O.V. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’. Appl Microbiol Biotechnol 89, 1289–1303 (2011). https://doi.org/10.1007/s00253-010-3057-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3057-6

Keywords

Navigation