Skip to main content

Advertisement

Log in

A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The secreted proteome of Pichia pastoris X-33 was investigated in methanol-induced cultures with a goal to enhance the secretion and purification of recombinant proteins. In a fed-batch fermentation at 30 °C, more host proteins were found in greater concentrations compared to cultures grown at 25 °C. Protein samples collected directly from the culture media at 25 °C, as well as separated by two-dimensional (2D) gel, were subjected to ESI-MS/MS analysis. A total of 75 proteins were identified in the media from different conditions including pre- and post-methanol induction and in a strain overexpressing a recombinant schistosomiasis vaccine, Sm14-C62V. The identified proteins include native secreted proteins and some intracellular proteins, most of which have low isoelectric points (pI < 6). 2D gel analyses further revealed important characteristics, such as abundance, degradation, and glycosylation of these identified proteins in this proteome. Cell wall-associated proteins involved in cell wall biogenesis, structure, and modification comprised the majority of the secreted proteins which have been identified. Intracellular proteins such as alcohol oxidase and superoxide dismutase were also found in the proteome, suggesting some degree of cell lysis. However, both protocols show that their concentrations are significantly lower than the native secreted proteins. This study identifies proteins secreted or released into the culture media in the methanol-induced fermentation cultures of P. pastoris X-33 and suggests potential biotechnology applications based on the discovery of this proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, van Dijl JM, Hecker M (2001) A proteomic view on genome-based signal peptide predictions. Genome Res 11:1484–1502

    Article  CAS  Google Scholar 

  • Cappellaro C, Mrsa V, Tanner W (1998) New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. J Bacteriol 180:5030–5037

    CAS  Google Scholar 

  • Celik E, Calik P, Oliver SG (2009) Fed-batch methanol feeding strategy for recombinant protein production by Pichia pastoris in the presence of co-substrate sorbitol. Yeast 26:473–484

    Article  CAS  Google Scholar 

  • Cereghino GP, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332

    Article  Google Scholar 

  • Chawla A, Niwa M (2005) The unfolded protein response. Curr Biol 15:R907

    Article  CAS  Google Scholar 

  • Cregg JM, Cereghino JL, Shi J, Higgins DR (2000) Recombinant protein expression in Pichia pastoris. Mol Biotechnol 16:23–52

    Article  CAS  Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18:119–138

    Article  CAS  Google Scholar 

  • Damasceno LM, Pla I, Chang HJ, Cohen L, Ritter G, Old LJ, Batt CA (2004) An optimized fermentation process for high-level production of a single-chain Fv antibody fragment in Pichia pastoris. Protein Expr Purif 37:18–26

    Article  CAS  Google Scholar 

  • Damasceno LM, Anderson KA, Ritter G, Cregg JM, Old LJ, Batt CA (2007) Cooverexpression of chaperones for enhanced secretion of a single-chain antibody fragment in Pichia pastoris. Appl Microbiol Biotechnol 74:381–389

    Article  CAS  Google Scholar 

  • d’Anjou MC, Daugulis AJ (2001) A rational approach to improving productivity in recombinant Pichia pastoris fermentation. Biotechnol Bioeng 72:1–11

    Article  Google Scholar 

  • De Schutter K, Lin YC, Tiels P, Van Hecke A, Glinka S, Weber-Lehmann J, Rouze P, Van der Peer Y, Callewaert N (2009) Genome sequence of the recombinant protein production host Pichia pastoris. Nat Biotechnol 27:561–566

    Article  Google Scholar 

  • Dragosits M, Stadlmann J, Albiol J, Baumann K, Maurer M, Gasser B, Altmann F, Ferrer P, Mattanovich D (2009) The effect of temperature on the proteome of recombinant Pichia pastoris. J Proteome Res 8:1380–1392

    Article  CAS  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971

    Article  CAS  Google Scholar 

  • Garbis S, Lubec G, Fountoulakis M (2005) Limitations of current proteomics technologies. J Chromatogr A 1077:1–18

    Article  CAS  Google Scholar 

  • Gasser B, Maurer M, Rautio J, Sauer M, Bhattacharyya A, Saloheimo M, Penttila M, Mattanovich D (2007) Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions. BMC Genomics 8:179

    Article  Google Scholar 

  • Hohenblum H, Borth N, Mattanovich D (2003) Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J Biotechnol 102:281–290

    Article  CAS  Google Scholar 

  • Hong F, Meinander NQ, Jonsson LJ (2002) Fermentation strategies for improved heterologous expression of laccase in Pichia pastoris. Biotechnol Bioeng 79:438–449

    Article  CAS  Google Scholar 

  • Jahic M, Wallberg F, Bollok M, Garcia P, Enfors SO (2003) Temperature limited fed-batch technique for control of proteolysis in Pichia pastoris bioreactor cultures. Microb Cell Fact 2:6

    Article  Google Scholar 

  • Jiang F, Kongsaeree P, Schilke K, Lajoie C, Kelly C (2008) Effects of pH and temperature on recombinant manganese peroxidase production and stability. Appl Biochem Biotechnol 146:15–27

    Article  CAS  Google Scholar 

  • Kim Y, Nandakumar MP, Marten MR (2007) Proteomics of filamentous fungi. Trends Biotechnol 25:395–400

    Article  CAS  Google Scholar 

  • Kurtzman CP (2009) Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol 36:1435–1438

    Article  CAS  Google Scholar 

  • Lee SJ, Kim BD, Rose JK (2006) Identification of eukaryotic secreted and cell surface proteins using the yeast secretion trap screen. Nat Protoc 1:2439–2447

    Article  CAS  Google Scholar 

  • Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    Article  CAS  Google Scholar 

  • Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, Renugopalakrishnan V (2007) Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol 142:105–124

    Article  CAS  Google Scholar 

  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM (2005) Heterologous protein production using the Pichia pastoris expression system. Yeast 22:249–270

    Article  CAS  Google Scholar 

  • Marx H, Sauer M, Resina D, Vai M, Porro D, Valero F, Ferrer P, Mattanovich D (2006) Cloning, disruption and protein secretory phenotype of the GAS1 homologue of Pichia pastoris. FEMS Microbiol Lett 264:40–47

    Article  CAS  Google Scholar 

  • Mattanovich D, Callewaert N, Rouze P, Lin YC, Graf A, Redl A, Tiels P, Gasser B (2009a) Open access to sequence: browsing the Pichia pastoris genome. Microb Cell Fact 8:53

    Article  Google Scholar 

  • Mattanovich D, Graf A, Stadlmann J, Dragosits M, Redl A, Maurer M, Kleinheninz M, Sauer M, Altmann F, Gasser B (2009b) Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris. Microb Cell Fact 8:29

    Article  Google Scholar 

  • Metz CN, Brunner G, Choi-Muira NH, Nguyen H, Gabrilove J, Caras IW, Altszuler N, Rifkin DB, Wilson EL, Davitz MA (1994) Release of GPI-anchored membrane proteins by a cell-associated GPI-specific phospholipase D. EMBO J 13:1741–1751

    CAS  Google Scholar 

  • Minning S, Serrano A, Ferrer P, Sola C, Schmid RD, Valero F (2001) Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol 86:59–70

    Article  CAS  Google Scholar 

  • Noiva R, Lennarz WJ (1992) Protein disulfide isomerase. A multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem 267:3553–3556

    CAS  Google Scholar 

  • Nombela C, Gil C, Chaffin WL (2006) Non-conventional protein secretion in yeast. Trends Microbiol 14:15–21

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  • Simpson JC, Mateos A, Pepperkok R (2007) Maturation of the mammalian secretome. Genome Biol 8:211

    Article  Google Scholar 

  • Swaim CL, Anton BP, Sharma SS, Taron CH, Benner JS (2008) Physical and computational analysis of the yeast Kluyveromyces lactis secreted proteome. Proteomics 8:2714–2723

    Article  CAS  Google Scholar 

  • Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64:515–547

    Article  CAS  Google Scholar 

  • Tjalsma H, Antelmann H, Jongbloed JD, Bron S, van Dijl JM (2004) Proteomics of protein secretion by Bacillus subtilis: separating the “secrets” of the secretome. Microbiol Mol Biol Rev 68:207–233

    Article  CAS  Google Scholar 

  • Tolner B, Smith L, Begent RH, Chester KA (2006) Production of recombinant protein in Pichia pastoris by fermentation. Nat Protoc 1:1006–1021

    Article  CAS  Google Scholar 

  • Wang X, Hunter AK, Mozier NM (2009) Host cell proteins in biologics development: identification, quantitation and risk assessment. Biotechnol Bioeng 103:446–458

    Article  CAS  Google Scholar 

  • Xu Z, Shih MC, Poulton JE (2006) An extracellular exo-beta-(1,3)-glucanase from Pichia pastoris: purification, characterization, molecular cloning, and functional expression. Protein Expr Purif 47:118–127

    Article  CAS  Google Scholar 

  • Zorn H, Peters T, Nimtz M, Berger RG (2005) The secretome of Pleurotus sapidus. Proteomics 5:4832–4838

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Sabine Baumgart for mass sample preparation and invaluable suggestions for the study. This work was supported by Cornell University/Ludwig Institute for Cancer Research Partnership.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl A. Batt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement 1

(XLS 356 kb)

Supplement 2

Table A. The Blast results of identified P. pastoris proteins against S. cerevisiae protein database (DOC 123 kb)

Supplement 3

(XLS 1 kb)

Supplement 4

Identification of proteins in 23 2D gel spots showing high protein scores and at least two peptide hits (DOC 119 kb)

Supplement 5

Glycostain of the Sm-14 gel. A glycostain (A) and a Coomassie stain (B) of the Sm14 gel for identification of glycoprotein in the gel spots. The spot numbers are shown based on Fig. 4. The square indicates leftover dye on the 2D gel. (JPEG 46 kb)

Supplement 6

Comparison of identified proteins in glucose-induced culture (Mattanovich et al. 2009b) to their protein homologs identified from this study (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, CJ., Damasceno, L.M., Anderson, K.A. et al. A proteomic analysis of the Pichia pastoris secretome in methanol-induced cultures. Appl Microbiol Biotechnol 90, 235–247 (2011). https://doi.org/10.1007/s00253-011-3118-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3118-5

Keywords

Navigation