Skip to main content

Advertisement

Log in

Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, a biological evaluation of the antimicrobial activity of Zn-doped titania nanofibers was carried out using Escherichia coli ATCC 52922 (Gram negative) and Staphylococcus aureus ATCC 29231 (Gram positive) as model organisms. The utilized Zn-doped titania nanofibers were prepared by the electrospinning of a sol–gel composed of zinc nitrate, titanium isopropoxide, and polyvinyl acetate; the obtained electrospun nanofibers were vacuum dried at 80°C and then calcined at 600°C. The physicochemical properties of the synthesized nanofibers were determined by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, and transmission electron microscopy (TEM). The antibacterial activity and the acting mechanism of Zn-doped titania nanofibers against bacteria were investigated by calculation of minimum inhibitory concentration and analyzing the morphology of the bacterial cells following the treatment with nanofibers solution. Our investigations reveal that the lowest concentration of Zn-doped titania nanofibers solution inhibiting the growth of S. aureus ATCC 29231 and E. coli ATCC 52922 strains is found to be 0.4 and 1.6 μg/ml, respectively. Furthermore, Bio-TEM analysis demonstrated that the exposure of the selected microbial strains to the nanofibers led to disruption of the cell membranes and leakage of the cytoplasm. In conclusion, the combined results suggested doping promotes antimicrobial effect; synthesized nanofibers possess a very large surface-to-volume ratio and may damage the structure of the bacterial cell membrane, as well as depress the activity of the membranous enzymes which cause bacteria to die in due course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852

    Article  CAS  Google Scholar 

  • Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  CAS  Google Scholar 

  • Doménech J, Prieto A (1986) Stability of zinc oxide particles in aqueous suspensions under UV illumination. J Phys Chem 90:123–1126

    Article  Google Scholar 

  • Frenot A, Chronakis IS (2003) Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 8:64–75

    Article  CAS  Google Scholar 

  • Ge JJ, Hou H, Li Q, Graham MJ, Greiner A, Reneker DH, Harris FW, Cheng SZD (2004) Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments: electrospun composite nanofiber sheets. J Am Chem Soc 126:15754–15761

    Article  CAS  Google Scholar 

  • Hou HQ, Reneker DH (2004) Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv Mater 16:69–73

    Article  CAS  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  Google Scholar 

  • Li D, Xia YN (2003) Fabrication of titania nanofibers by electrospinning. Nano Lett 3:555–560

    Article  CAS  Google Scholar 

  • Li QL, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 424:591–4602

    Google Scholar 

  • Madhugiri S, Dalton A, Gutierrez J, Ferraris JP, Balkus KJ Jr (2003) Electrospun MEH- PPV/SBA-15 composite nanofibers using a dual syringe method. J Am Chem Soc 125:14531–14538

    Article  CAS  Google Scholar 

  • Mahltig B, Gutmann E, Meyer DC, Reibold M, Dresler B, Günther K, Faler D, Böttcher H (2007) Solvothermal preparation of metallized titania for photocatalytic and antimicrobial coatings. J Mater Chem 17:2367–2374

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:1–7

    Article  Google Scholar 

  • Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV (2007) Titania and silver-titania composite films on glass-potent antimicrobial coatings. J Mater Chem 17:95–104

    Article  CAS  Google Scholar 

  • Prasad AS (1995) Zinc—an overview. Nutrition 11:93–99

    CAS  Google Scholar 

  • Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A (2007) Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett 90:1–3

    Google Scholar 

  • Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082

    CAS  Google Scholar 

  • Sandstead HH (1994) Understanding zinc—recent observations and interpretations. J Lab Clin Med 124:322–327

    CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Meth 54:177–182

    Article  CAS  Google Scholar 

  • Seven O, Dindar B, Aydemir S, Metin D, Ozinel MA, Icli S (2004) Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara desert dust. J Photochem Photobiol Chem 165:103–107

    Article  CAS  Google Scholar 

  • Sonohara R, Muramatsu N, Ohshima H, Kondo T (1995) Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem 55:273–277

    Article  CAS  Google Scholar 

  • Sorapong P, Yoshikazu S, Yoshikawa S, Kawahata R (2005) Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand. J Solid State Chem 178:3110–3116

    Article  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sunada K, Watanabe T, Hashimoto K (2003) Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ Sci Technol 37(20):4785–4789

    Article  CAS  Google Scholar 

  • Thiel J, Pakstis L, Buzby S, Ni C, Pochan DJ, Shah SI (2007) Antibacterial properties of silver-doped Titania. Small 3:799–803

    Article  CAS  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646

    Article  CAS  Google Scholar 

  • Yamamoto O, Sawai J, Sasamoto T (2002) Activated carbon sphere with antibacterial characteristics. Mater Trans 43:1069–1073

    Article  CAS  Google Scholar 

  • Yoon YI, Moon HS, Lyoo WS, Lee TS, Park WH (2009) Superhydrophobicity of cellulose triacetate fibrous mats produced by electrospinning and plasma treatment. Carbohydr Polym 5:246–250

    Article  Google Scholar 

  • Zhan SH, Chen DR, Jiao XL, Liu SS (2007) Facile fabrication of long alpha-Fe2O3, alpha- Fe and gamma-Fe2O3 hollow fibers using sol–gel combined co-elecrospinning technology. J Colloid Interface Sci 308:265–270

    Article  CAS  Google Scholar 

  • Zhang H, Chen G (2009) Potent antibacterial activities of Ag/TiO2 nanocomposite powders synthesized by a one-pot sol-gel method. Environ Sci Technol 43(8):2905–2910

    Article  CAS  Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  Google Scholar 

  • Zhao JG, Jia CW, Duan HG, Sun ZW, Wang XM, Xie EQ (2008) Structural and photoluminescence properties of europium-doped titania nanofibers prepared by electrospinning method. J Alloys Compd 455:497–500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Kang Jong-Gyun and Miss Lee Jeong Ok, Center for University-Wide Research Facilities, Chonbuk National University, for their nice cooperation in Transmission Electron Microscopy (TEM) and Bio-TEM observations. Authors also thank for FE-SEM images from the Korea Basic Science Institute (KBSI)—Jeonju branch in Chonbuk National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amna, T., Hassan, M.S., Barakat, N.A.M. et al. Antibacterial activity and interaction mechanism of electrospun zinc-doped titania nanofibers. Appl Microbiol Biotechnol 93, 743–751 (2012). https://doi.org/10.1007/s00253-011-3459-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3459-0

Keywords

Navigation