Skip to main content
Log in

Pullulan: biosynthesis, production, and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pullulan is a linear glucosic polysaccharide produced by the polymorphic fungus Aureobasidium pullulans, which has long been applied for various applications from food additives to environmental remediation agents. This review article presents an overview of pullulan’s chemistry, biosynthesis, applications, state-of-the-art advances in the enhancement of pullulan production through the investigations of enzyme regulations, molecular properties, cultivation parameters, and bioreactor design. The enzyme regulations are intended to illustrate the influences of metabolic pathway on pullulan production and its structural composition. Molecular properties, such as molecular weight distribution and pure pullulan content, of pullulan are crucial for pullulan applications and vary with different fermentation parameters. Studies on the effects of environmental parameters and new bioreactor design for enhancing pullulan production are getting attention. Finally, the potential applications of pullulan through chemical modification as a novel biologically active derivative are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akiyoshi K, Kobayashi S, Shichibe S, Mix D, Baudys M, Kim SW, Sunamoto J (1998) Complexation and stabilization of insulin. J Control Release 54:313–320

    CAS  PubMed  Google Scholar 

  • Audet J, Lounes M, Thibault J (1996) Pullulan fermentation in a reciprocating plate bioreactor. Bioprocess Eng 15:209–214

    CAS  Google Scholar 

  • Audet J, Gagnon H, Lounes M, Thibault J (1998) Polysaccharide production: experimental comparison of the performance of four mixing devices. Bioprocess Eng 19:45–52

    CAS  Google Scholar 

  • Bae H, Ahari FA, Shin H, Nichol WJ, Hutson BC, Masaeli M, Kim SH, Aubin H, Yamanlar S, Khademhosseini A (2011) Cell-laden microengineered pullulan methacylate hydrogels promote cell proliferation and 3D cluster formation. Soft Matter 7:1903–1911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer R (1938) Physiology of Dematium pullulans de Bary. Zentralbl Bacteriol Parasitenkd Infektionskr Hyg Abt2 98:133–167

    Google Scholar 

  • Bender H, Lehman J, Wallenfels K (1959) Pullulan, an extracellular glucan from Pullularia pullulans. Biochim Biophys Acta 36:310–317

    Google Scholar 

  • Boa JM, LeDuy A (1987) Pullulan from peat hydrolyzate fermentation kinetics. Biotechnol Bioeng 30:463–470

    CAS  PubMed  Google Scholar 

  • Boridy S, Takahashi H, Akiyoshi K, Maysinger D (2009) The binding of pullulan modified cholesteryl nanogels to Abeta oligomers and their suppression of cytotoxicity. Biomaterials 30:5583–5591

    CAS  PubMed  Google Scholar 

  • Breierova E, Vajczikova I, Sasinkova V, Stratilova E, Fisera M, Gregor T, Sajbidor J (2002) Biosorption of cadmium ions by different yeast species. Z Naturforsch 57:634–639

    CAS  Google Scholar 

  • Bruneel D, Schacht E (1993) Chemical modification of pullulan: 1. Periodate oxidation. Polymer 34:2628–2632

    CAS  Google Scholar 

  • Buliga GS, Brant DA (1987) Temperature and molecular weight dependence of the unperturbed dimensions of aqueous pullulan. Int J Biol Macromol 9:71–76

    CAS  Google Scholar 

  • Bulmer MA, Catley BJ, Kelly PJ (1987) The effect of ammonium ions and pH on the elaboration of the fungal extracellular polysaccharide, pullulan, by Aureobasidium pullulans. Appl Microbiol Biotechnol 25:362–365

    CAS  Google Scholar 

  • Campbell BS, Siddique AB, McDougall BM, Seviour RJ (2004) Which morphological forms of the fungus Aureobasidium pullulans are responsible for pullulan production? FEMS Microbiol Lett 232:225–228

    CAS  PubMed  Google Scholar 

  • Campbell SB, McDougall MB, Seviour JR (2003) Why do exopolysaccharide yields from the fungus Aureobasidium pullulans fall during batch culture fermentation? Enzym Microb Technol 33:104–112

    CAS  Google Scholar 

  • Catley BJ (1971) Utilization of carbon sources by Pullularia pullulans for the elaboration of extracellular polysaccharides. Appl Microbiol 22:641–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catley BJ, McDowell W (1982) Lipid-linked saccharides formed during pullulan biosynthesis in Aureobasidium. Carbohydr Res 103:65–75

    CAS  Google Scholar 

  • Catley BJ, Ramsay A, Servis C (1986) Observations on the structure of the fungal extracellular polysaccharide, pullulan. Carbohydr Res 153:79–86

    CAS  Google Scholar 

  • Catley BJ, Robyt JF, Whelan WJ (1966) A minor structural feature of pullulan. Biochem J 100:5–8

    Google Scholar 

  • Catley BJ (1973) The rate of elaboration of the extracellular polysaccharide, pullulan, during growth of Pullularia pullulans. J Gen Microbiol 78:33–38

    CAS  PubMed  Google Scholar 

  • Catley BJ (1980) The extracellular polysaccharide pullulan, produced by Aureobasidium pullulans: a relationship between elaboration rate and morphology. J Gen Microbiol 120:265–268

    CAS  Google Scholar 

  • Chabasse D (2002) Phaeohyphomycetes agents of phaeohyphomycosis: emerging fungi. J Mycol Med 12:65–85

    Google Scholar 

  • Chang YH (2009) The effect of light on the production of the fungal extracellular polysaccharide by Aureobasidium pullulans. Masteral thesis, Taoyen, Taiwan

  • Characklis WG, Wilderer AP (1989) Microbial adhesion and aggregation. Marshall KC (ed) Springer, Berlin, pp 137–157

    Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ (2009a) Current knowledge of pullulan—from production to application. Curr Top Biotechnol 5:29–48

    CAS  Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ (2009b) Effects of plastic composite support and pH profiles on pullulan production in a biofilm reactor. Appl Microbiol Biotechnol 86:853–861

    PubMed  Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ (2010a) Enhanced pullulan production in a biofilm reactor by using response surface methodology. J Ind Microbiol Biotechnol 37:587–594

    CAS  PubMed  Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ, Puri VM (2010b) Modeling of bacterial growth, pullulan production and sucrose consumption during batch fermentation by Aureobasidium pullulans. J Food Eng 98:353–359

    CAS  Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ (2010c) Advances in biofilm reactors for production of value-added products. Appl Microbiol Biotechnol 87:445–456

    CAS  PubMed  Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ (2011a) Continuous pullulan fermentation in biofilm reactor by Aureobasidium pullulans. Appl Microbiol Biotechnol 90:921–927

    CAS  PubMed  Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ (2011b) Evaluation of medium composition and cultivation parameters on pullulan production by Aureobasidium pullulans. Food Sci Technol Int 17:99–109

    CAS  PubMed  Google Scholar 

  • Cheng KC, Demirci A, Catchmark MJ, Puri VM (2011c) Effects of initial ammonium sulfate concentration on batch kinetics of pullulan production. J Food Eng 103:115–122

    CAS  Google Scholar 

  • Chi Z, Zhao S (2003) Optimization of medium and new cultivation conditions for pullulan production by a new pullulan-producing yeast strain. Enzym Microb Technol 33:206–211

    CAS  Google Scholar 

  • Chi Z, Wang F, Chi Z, Yue L, Liu G, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82:793–804

    CAS  PubMed  Google Scholar 

  • Cooke WB (1959) An ecological life history of Aureobasidium pullulans (de Bary) Arnaud. Mycopathol Mycol Appl 12:1–45

    CAS  PubMed  Google Scholar 

  • Delben F, Forabosco A, Guerrini M, Liut G, Torri G (2006) Pullulans produced by strains of Cryphonectria parasitica—II. Nuclear magnetic resonance evidence. Carbohydr Polym 63:545–554

    CAS  Google Scholar 

  • Donabedian DH, McCarthy SP (1998) Acylation of pullulan by ring-opening of lactones. Macromolecules 31:1032–1039

    CAS  Google Scholar 

  • Duan XH, Chi ZM, Wang L, Wang XH (2008) Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym 73:587–593

    CAS  PubMed  Google Scholar 

  • Dudman WF (1977) Surface carbohydrates of the prokaryotic cell. Sutherland IW (ed). Academic, New York, pp 357–414

  • Dufresne R, Thibault J, LeDuy A, Lencki R (1990) The effect of pressure on the growth of Aureobasidium pullulans and the synthesis of pullulan. Appl Microbiol Biotechnol 32:526–532

    CAS  Google Scholar 

  • Finkelman MAJ, Vardanis A (1982) Simplified microassay for pullulan synthesis. Appl Environ Microbiol 43:483–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forabosco A, Bruno G, Sparapano L, Liut G, Marino D, Delben F (2006) Pullulans produced by strains of Cryphonectria parasitica—I. Production and characterization of the exopolysaccharides. Carbohydr Polym 63:535–544

    CAS  Google Scholar 

  • Fraser CG, Jennings HJ (1971) A glucan from Tremella mesenterica NRRL-Y6158. Can J Chem 49:1804–1807

    CAS  Google Scholar 

  • Gao W, Kim YJ, Chung CH, Li J, Lee JW (2010) Optimization of mineral salts in medium for enhanced production of pullulan by Aureobasidium pullulans HP-2001 using an orthogonal array method. Biotechnol Bioprocess Eng 15:837–845

    CAS  Google Scholar 

  • Gibbs PA, Seviour RJ (1996) Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch? Appl Biochem Biotechnol 46:503–510

    CAS  Google Scholar 

  • Gibson LH, Coughlin RW (2002) Optimization of high molecular weight pullulan production by Aureobasidium pullulans in batch fermentations. Biotechnol Progress 18:675–678

    CAS  Google Scholar 

  • Göksungur Y, Dağbağlı S, Uçan A, Güvenç U (2005) Optimization of pullulan production from synthetic medium by Aureobasidium pullulans in a stirred tank reactor by response surface methodology. J Chem Technol Biotechnol 80:819–827

    Google Scholar 

  • Gorin PAJ, Mazurek M, Spencer JFT (1968) Proton magnetic resonance spectra of Trichosporon aculeatum mannan and its borate complex and its relation to chemical structure. Can J Chem 46:2305–2310

    CAS  Google Scholar 

  • Gounga ME, Xu SY, Wang Z, Yang WG (2008) Effect of whey protein isolate-pullulan edible coatings on the quality and shelf-life of freshly roasted and freeze-dried Chinese chestnut. J Food Sci 73:151–161

    Google Scholar 

  • Hasa Y, Tazaki H, Ohnishi M, Oda Y (2006) Preparation of anti-sticking substance for cooked noodles by fungal hydrolysis of potato pulp. Food Biotechnol 20:263–274

    CAS  Google Scholar 

  • Hayashi S, Hayashi T, Takasaki Y, Imada K (1994) Purification and properties of glucosyltransferase from Aureobasidium. J Ind Microbiol Biotechnol 13:5–9

    CAS  Google Scholar 

  • Hayashi K, Erikson WD, Tilford AS, Bany MB, Maclean AJ II, Rucker BE III, Johnson AG, Spencer ET (2009) Wnt genes in the mouse uterus: potential regulation of implantation. Biol Reprod 85:989–1000

    Google Scholar 

  • Heald PJ, Kristiansen B (1985) Synthesis of polysaccharide by yeast-like forms of Aureobasidium pullulans. Biotechnol Bioeng 27:1516–1519

    CAS  PubMed  Google Scholar 

  • Heeres A, Spoelma EF, van Doren HA, Gotlieb KF, Bleeker IP, Kellogg RM (2000) Synthesis and reduction of 2-nitroalkyl polysaccharide ethers. Carbohydr Polym 42:33–43

    CAS  Google Scholar 

  • Hijiya H, Shiosaka M (1975) Process for the preparation of food containing pullulan and amylase. US Patent Office, Pat. No. 3 872 228

  • Ho K-LG, Pometto AL III, Hinz PN, Demirci A (1997) Nutrient leaching and end product accumulation in plastic composite support for l-(+)-lactic acid biofilm fermentation. Appl Environ Microbiol 63:2524–2532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2002) Liver targeting of plasmid DNA by pullulan conjugation based on metal coordination. J Control Release 83:287–302

    CAS  PubMed  Google Scholar 

  • Iyer A, Mody KH, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Poll Bull 50:340–343

    CAS  Google Scholar 

  • Kachhawa DK, Bhattacharjee P, Singhal RS (2003) Studies on downstream processing of pullulan. Carbohydr Polym 52:25–28

    CAS  Google Scholar 

  • Kandemir N, Yemenicioglu A, Mecitoglu C, Elmaci ZS, Arslanoglu A, Goksungur Y, Baysal T (2005) Production of antimicrobial films by incorporation of partially purified lysozyme into biodegradable films of crude exopolysaccharides obtained from Aureobasidium pullulans fermentation. Food Technol Biotechnol 43:343–350

    CAS  Google Scholar 

  • Kaneo Y, Tanaka T, Nakano T, Yamaguchi Y (2001) Evidence for receptor-mediated hepatic uptake of pullulan in rats. J Control Release 70:365–73

    CAS  PubMed  Google Scholar 

  • Kato K, Nomura T (1976) Method for continuously purifying pullulan. US Patent Office, Pat. No. 3 959 009

  • Kawahara K, Ohta K, Miyamoto H, Nakamura S (1984) Preparation and solution properties of pullulan fractions as standard samples for water-soluble polymers. Carbohydr Polym 4:335–356

    CAS  Google Scholar 

  • Kaya A, Du X, Liu Z, Lu WJ, Morris RJ, Glasser GW, Heinze T, Esker RA (2009) Surface plasmon resonance studies of pullulan and pullulan cinnamate adsorption onto cellulose. Biomacromolecules 10:2451–2459

    CAS  PubMed  Google Scholar 

  • Kim JH, Kim MR, Lee JH, Lee JW, Kim SK (2000) Production of high molecular weight pullulan by Aureobasidium pullulans using glucosamine. Biotechnol Lett 22:987–990

    CAS  Google Scholar 

  • Kimoto T, Shibuya T, Shiobara S (1997) Safety studies of a novel starch, pullulan: chronic toxicity in rats and bacterial mutagenicity. Food Chem Toxicol 35:323–329

    CAS  PubMed  Google Scholar 

  • Klimek J, Ollis DF (1980) Extracellular microbial polysaccharides: kinetics of Pseudomonas sp., Azotobacter vinelandii and Aureobasidium pullulans batch fermentation. Biotechnol Bioeng 22:2321–2342

    CAS  Google Scholar 

  • Krumnow AA, Sorokulova BI, Olsen E, Globa L, Barbaree MJ, Vodyanoy JV (2009) Preservation of bacteria in natural polymers. J Microbiol Methods 78:189–194

    CAS  PubMed  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117

    CAS  PubMed  Google Scholar 

  • Lacroix C, LeDuy A, Noel G, Choplin L (1985) Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol Bioeng 27:202–207

    CAS  PubMed  Google Scholar 

  • Lazaridou A, Biliaderis CG (2009) Concurrent phase separation and gelation in mixed oat β-glucans/sodium caseinate and oat β-glucans/pullulan aqueous dispersions. Food Hydrocoll 23:886–895

    CAS  Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473

    CAS  PubMed  Google Scholar 

  • Leathers TD, Nofsinger GW, Kurtzman CP, Bothast RJ (1988) Pullulan production by color variant strains of Aureobasidium pullulans. J Ind Microbiol 3:231–239

    Google Scholar 

  • Leathers TD, Gupta SC (1994) Production of pullulan from fuel ethanol byproducts by Aureobasidium sp. strain NRRL Y-12974. Biotechnol Lett 16:1163–1166

    CAS  Google Scholar 

  • Leathers TD (1987) 1987. In: Kaplan DL (ed) First materials biotechnology symposium. US Army, Natick, pp 175–185

    Google Scholar 

  • LeDuy A, Zajic JE, Luong JHT, Choplin L (1988) Encyclopedia of polymer science and engineering, 2nd edn. Wiley, New York

    Google Scholar 

  • LeDuy A, Boa JM (1983) Enhanced production of pullulan from lactose by adaptation and by mixed culture techniques. Can J Microbiol 29:143–146

    CAS  Google Scholar 

  • Lee KY, Yoo YJ (1993) Optimization of pH for high molecular weight pullulan. Biotechnol Lett 15:1021–1024

    CAS  Google Scholar 

  • Lee JH, Kim JH, Zhu IH, Zhan XB, Lee JW, Shin DH, Kim SK (2001) Optimization of conditions for the production of pullulan and high molecular weight pullulan. Biotechnol Lett 23:817–820

    CAS  Google Scholar 

  • Lee JW, Yeomans WG, Allen AL, Deng F, Gross RA, Kaplan DL (1999) Biosynthesis of novel exopolymers by Aureobasidium pullulans. Appl Environ Microbiol 65:5265–5271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li BX, Zhang N, Peng Q, Yin T, Guan FF, Wang GL, Li Y (2009) Production of pigment-free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl Microbiol Biotechnol 84:293–300

    CAS  PubMed  Google Scholar 

  • Li H, Yang J, Hu X, Liang J, Fan Y, Zhang X (2011) Superabsorbent polysaccharide hydrogels based on pullulan derivate as antibacterial release wound dressing. J Biomed Mat Res 98A:31–39

    CAS  Google Scholar 

  • Lin Y, Zhang Z, Thibault J (2007) Aureobasidium pullulans batch cultivations based on a factorial design for improving the production and molecular weight of exopolysaccharides. Process Biochem 42:820–827

    CAS  Google Scholar 

  • Madi NS, McNeil B, Harvey LM (1996) Influence of culture pH and aeration on ethanol production and pullulan molecular weight by Aureobasidium pullulans. J Chem Technol Biotechnol 66:343–350

    Google Scholar 

  • Madi NS, Harvey LM, Mehlert A, McNeil B (1997a) Synthesis of two distinct exopolysaccharide fractions by cultures of the polymorphic fungus Aureobasidium pullulans. Carbohydr Polym 32:307–314

    CAS  Google Scholar 

  • Madi N, McNeil B, Harvey LM (1997b) Effect of exogenous calcium on morphological development and biopolymer synthesis in the fungus Aureobasidium pullulans. Enzyme Microb Technol 21:102–107

    CAS  Google Scholar 

  • Manitchotpisit P, Skory CD, Leathers TD, Lotrakul P, Eveleigh DE, Prasongsuk S, Punnapayak H (2010) α-Amylase activity during pullulan production and α-amylase gene analyses of Aureobasidium pullulans. J Ind Microbiol Biotechnol. doi:https://doi.org/10.1007/s10295-010-0899-y

    Google Scholar 

  • Matsunaga H, Tsuji K, Watanabe M (1978) Coated seed containing pullulan-based resin used as binder. US Patent Office, Pat. No. 4 067 141

  • Mayer JM, Greenberger M, Ball DH, Kaplan DL (1990) Polysaccharides, modified polysaccharides and polysaccharide blends for biodegradable materials. Polym Mater Sci Eng 63:732–735

    CAS  Google Scholar 

  • McNeil B, Kristiansen B (1987) Polysaccharide production and morphology of Aureobasidium pullulans in continuous culture. Biotechnol Lett 9:101

    CAS  Google Scholar 

  • Miller GL (1959) Use of DNS reagent for determination of reducing sugar. Anal Chem 31:426–428

    CAS  Google Scholar 

  • Miyaka T (1979) Shaped matters of tobaccos and process for preparing the same. Canadian Patent Office, Pat. No. 1 049 245

  • Mocanu G, Carpov A, Chapelle S, Merle L, Muller G (1995) Chemically modified pullulans II. New hydrophobically substituted derivatives. Can J Chem 73:1933–1940

    CAS  Google Scholar 

  • Mohammad FHA, Badr-Eldin SM, El-Tayeb OM, Abd El-Rahman OA (1995) Polysaccharide production by Aureobasidium pullulans III. The influence of initial sucrose concentration on batch kinetics. Biomass Bioenergy 8:121–129

    CAS  Google Scholar 

  • Morin A (1998) In: Dumitriu S (ed) Polysaccharides—structural diversity and functional versatility. Marcel Dekker, New York, pp 275–296

    Google Scholar 

  • Motozato Y, Ihara H, Tomoda T, Hirayama C (1986) Preperation and gel permeation chromatographic properties of pullulan sphere. J Chromatogr 355:434–437

    CAS  Google Scholar 

  • Mulchandani A, Luong JHT, LeDuy A (1988) Batch kinetics of microbial polysaccharide biosynthesis. Biotechnol Bioeng 32:639–646

    CAS  PubMed  Google Scholar 

  • Na K, Lee TB, Park K-H, Shin E-K, Lee Y-B, Choi H-K (2003) Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18:165–173

    CAS  PubMed  Google Scholar 

  • Nagane K, Kitada M, Wakao S, Dezawa M, Tabata Y (2009) Practical induction system for dopamine-producing cells from bone marrow stromal cells using spermine-pullulan-mediated reverse transfection method. Tissue Eng Part A 15:1655–1665

    CAS  PubMed  Google Scholar 

  • Nakatani M, Shibukawa A, Nakagawa T (2006) Separation mechanism of pullulan solution-filled capillary electrophoresis of sodium dodecyl sulfate proteins. Electrophoresis 17:1584–1586

    Google Scholar 

  • Nishikawa T, Akiyoshi K, Sunamoto J (1994) Supramolecular assembly between nanoparticles of hydrophobized polysaccharide and soluble protein complexation between the self-aggregate of cholesterol-bearing pullulan and α-chymotrypsin. Macromolecules 27:7654

    CAS  Google Scholar 

  • Okada K, Yoneyama M, Mandai T, Aga H, Sakai S, Ichikawa T (1990) Digestion and fermentation of pullulan. J Japan Soci Nutri Food Sci 43:23–29

    CAS  Google Scholar 

  • Oku T, Yamada K, Hosoya N (1979) Effect of pullulan and cellulose on the gastrointestinal tract of rats. Nutr Food Sci 32:235–241

    CAS  Google Scholar 

  • Oliva EM, Cirelli AF, De Lederkremer RM (1986) Characterization of a pullulan in Cyttaria darwinii. Carbohydr Res 158:262–267

    CAS  Google Scholar 

  • Olmo S, Gotti R, Naldi M, Andrisano V, Calonghi N, Parolin C, Masotti L, Cavrini V (2008) Analysis of human histone H4 by capillary electrophoresis in a pullulan-coated capillary, LC-ESI-MS and MALDI-TOF-MS. Anal Bioanal Chem 390:1181–1188

    Google Scholar 

  • Ono K, Kawahara Y, Ueda S (1977) Effect of pH on pullulan elaboration by Aureobasidium pullulans S-1. Agric Biol Chem 44:2113–2118

    Google Scholar 

  • Orr D, Zheng W, Campbell BS, McDougall BM, Seviour RJ (2009) Culture conditions affecting the chemical composition of the exopolysaccharide synthesized by the fungus Aureobasidium pullulans. J Appl Microbiol 107:691–698

    CAS  PubMed  Google Scholar 

  • Ouchi T, Minari T, Ohya Y (2004) Synthesis of poly(l-lactide)-grafted pullulan through coupling reaction between amino group end-capped poly(l-lactide) and carboxymethyl pullulan and its aggregation behavior in water. Polym Sci Part A: Polym Chem 42:5482–5487

    CAS  Google Scholar 

  • Pollock TJ (1992) Isolation of new Aureobasidium strains that produce high-molecular-weight pullulan with reduced pigmentation. Soc Ind Microbiol News 42:147–156

    Google Scholar 

  • Pometto AL III, Demirci A, Johnson KE (1997) Immobilization of microorganisms on a support made of synthetic polymer and plant material. US Patent No. 5,595,893

  • Pouliot MJ, Walton I, Nolen-Parkhouse M, Abu-Lail IL, Camesano AT (2005) Adhesion of Aureobasidium pullulans is controlled by uronic acid-based polymers and pullulan. Biomacromolecules 6:1122–1131

    CAS  PubMed  Google Scholar 

  • Prasongsuk S, Berhow MA, Dunlap CA, Weisleder D, Leathers TD, Eveleigh DE, Punnapayak H (2007) Pullulan production by tropical isolates of Aureobasidium pullulans. J Ind Microbiol Biotechnol 34:55–61

    CAS  PubMed  Google Scholar 

  • Radulovic MD, Cvetkovic OG, Nikolic SD, Dordevic DS, Makovljevic JD, Vrvic M (2008) Simultaneous production of pullulan and biosorption of metals by Aureobasidium pullulans strain CH-1 on peat hydrolysate. Bioresour Technol 99:6673–6677

    CAS  PubMed  Google Scholar 

  • Reeslev M, Storm T, Jensen B, Olsen J (1997) The ability of yeast form of Aureobasidium pullulans to elaborate exopolysaccharide in chemostat culture at various pH values. Mycol Res 101:650–652

    CAS  Google Scholar 

  • Reis RA, Tischer CA, Gorrin PA, Iacomini M (2002) A new pullulan and a branched (1→3)-, (1→6)-linked β-glucan from the lichenised ascomycete Teloschistes flavicans. FEMS Microbiol Lett 210:1–5

    CAS  PubMed  Google Scholar 

  • Rekha MR, Sharma CP (2007) Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs 20:116–121

    Google Scholar 

  • Rekha MR, Sharma CP (2009) Synthesis and evaluation of lauryl succinyl chitosan particles towards oral insulin delivery and absorption. Biomaterials 30:6655–64

    CAS  PubMed  Google Scholar 

  • Ronen M, Guterman H, Shabtai Y (2002) Monitoring and control of pullulan production using vision sensor. J Biochem Biophys Methods 3:243–249

    Google Scholar 

  • Roukas TC (1999) Pullulan production from brewery wastes by Aureobasidium pullulans. World J Microbiol Biotechnol 15:447–450

    CAS  Google Scholar 

  • Roukas T, Biliaderis CG (1995) Evaluation of carob pod as a substrate for pullulan production by Aureobasidium pullulans. Appl Biochem Biotechnol 55:27–44

    CAS  Google Scholar 

  • Roukas T, Mantzouridou F (2001) Effect of aeration rate on pullulan production and fermentation broth rheological properties in an airlift reactor. J Chem Technol Biotechnol 76:371–376

    CAS  Google Scholar 

  • San Juan A, Bala M, Hlawaty H, Portes P, Vranckx R, Feldman LJ, Letourneur D (2009) Development of a functionalized polymer coating in the arterial delivery of small interfering RNA. Biomacromolecules 10:3074–3080

    CAS  PubMed  Google Scholar 

  • Schuster R, Wenzig E, Mersmann A (1993) Production of the fungal exopolysaccharide pullulan by batch-wise and continuous fermentation. Appl Microbiol Biotechnol 39:155–158

    CAS  Google Scholar 

  • Seibutsu H, Kenkyujo M (1983) UK Patent Office, Pat. No. GB 2 109 391

  • Seo HP, Jo KI, Son CW, Yang JK, Chung CH, Nam SW, Kim SK, Lee JW (2006) Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J Microbiol Biotechnol 16:374–380

    CAS  Google Scholar 

  • Seo HP, Son CW, Chung CH, Jung D, Kim SK, Gross RA (2004) Production of high molecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source. Bioresour Technol 95:292–299

    Google Scholar 

  • Shingel KI (2004) Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide. Carbohydr Res 339:447–460

    CAS  PubMed  Google Scholar 

  • Shingel KI, Petrov PT (2002) Behavior of γ-ray-irradiated pullulan in aqueous solutions of cationic (cetyltrimethylammonium hydroxide) and anionic (sodium dodecyl sulfate) surfactants. Colloid Polym Sci 280:176–182

    CAS  Google Scholar 

  • Shin YC, Kim YH, Lee HS, Cho SJ, Byun SM (1987) Production of exopolysaccharide pullulan from inulin by a mixed culture of Aureobasidium pullulans and Kluyveromyces fragilis. Biotechnol Lett 9:621–624

    CAS  Google Scholar 

  • Shu CH, Lin KJ, Wen BJ (2007) Effects of culture temperature on the production of bioactive polysaccharides by Agaricus blazei in batch cultures. J Chem Technol Biotechnol 82:831–836

    CAS  Google Scholar 

  • Simon L, Caye-Vaugien C, Bouchonneau M (1993) Relation between pullulan production, morphological state and growth conditions in Aureobasidium pullulans: New observations. J Gen Microbiol 139:979–985

    CAS  Google Scholar 

  • Simon L, Bouchet B, Bremond K, Gallant DJ, Bouchonneau M (1998) Studies on pullulan extracellular production and glycogen intracellular content in Aureobasidium pullulans. Can J Microbiol 44:1193–1199

    CAS  Google Scholar 

  • Simon L, Bouchet B, Caye-Vaugien C (1995) Pullulan elaboration and differentiation of the resting forms in Aureobasidium pullulans. Can J Microbiol 40:35–45

    Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531

    CAS  PubMed  Google Scholar 

  • Singh RS, Saini GK (2007) Pullulan-hyperproducing color variant strain of Aureobasidium pullulans FB-1 newly isolated from phylloplane of Ficus sp. Bioresour Technol 99:3896–3899

    PubMed  Google Scholar 

  • Singh RS, Singh H, Saini GK (2009) Response surface optimization of the critical medium components for pullulan production by Aureobasidium pullulans FB-1. Appl Biochem Biotechnol 152:42–53

    CAS  PubMed  Google Scholar 

  • Sugawa-Katayama Y, Kondou F, Mandai T, Yoneyama M (1994) Effects of pullulan, polydextrose and pectin on cecal microflora. Oya Toshitu Kagaku 41:413–418

    CAS  Google Scholar 

  • Suginoshita Y, Tabata Y, Matsumura T, Toda Y, Nabeshima M, Moriyasu F, Ikada Y (2002) Liver targeting of human interferon-Il with pullulan based on metal coordination. J Control Release 83:75–88

    CAS  PubMed  Google Scholar 

  • Sutherland LW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46

    CAS  PubMed  Google Scholar 

  • Taguchi R, Sakano Y, Kikuchi Y, Sakuma M, Kobayashi T (1973) Synthesis of pullulan by acetone-dried cells and cell-free enzyme from Pullularia pullulans. Agric Biol Chem 37:1635–1641

    CAS  Google Scholar 

  • Tarabasz-Szymanska L, Galas E, Pankiewicz T (2000) Optimization of productivity of pullulan by means of multivariable linear regression analysis. Enzyme Microb Technol 24:276–282

    Google Scholar 

  • Thirumavalavan K, Manikkandan TR, Dhanasekar R (2008) Batch fermentation kinetics of pullulan from Aureobasidium pullulans using low-cost substrates. Biotechnology 7:317–322

    CAS  Google Scholar 

  • Thomson N, Ollis DF (1980) Extracellular microbial polysaccharides II. Evolution of broth power-law parameters for xanthan and pullulan batch fermentation. Biotechnol Bioeng 22:875–883

    CAS  Google Scholar 

  • Tsujisaka Y, Mitsuhashi M (1993) Pullulan. RL Whistler, JN BeMiller (ed). Academic, San Diego, pp 447–460

    Google Scholar 

  • Uchida S, Yamamoto A, Fukui I, Endo M, Umezawa H, Nagura S, Kubota T (1996) Siloxane-containing pullulan and method for the preparation thereof. US Patent No. 5 583 244

  • Ueda S, Fujita K, Komatsu K, Nakashima Z (1963) Polysaccharide produced by the genus Pullularia. I. Production of polysaccharide by growing cells. Appl Microbiol 11:211–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ürküt Z, Dağbağli S, Göksungur Y (2007) Optimization of pullulan production using Ca-alginate-immobilized Aureobasidium pullulans by response surface methodology. J Chem Technol Biotechnol 82:837–846

    Google Scholar 

  • Waksman N, De Lederkremer RM, Cerezo AS (1977) The structure of an α-d-glucan from Cyttaria harioti Fischer. Carbohydr Res 59:505–515

    CAS  Google Scholar 

  • Wecker A, Onken U (2005) Influence of dissolved oxygen concentration and shear rate on the production of pullulan by Aureobasidium pullulans. Biotechnol Lett 13:155–160

    Google Scholar 

  • West TP, Reed-Hamer B (1993) Polysaccharide production by a reduced pigmentation mutant of the fungus Aureobasidium pullulans. FEMS Microbiol Lett 113:345–349

    CAS  Google Scholar 

  • West TP, Strohfus B (2001a) Polysaccharide production by a reduced pigmentation mutant of Aureobasidium pullulans NYS-1. Lett Appl Microbiol 33:169–172

    CAS  PubMed  Google Scholar 

  • West TP, Strohfus B (2001b) Polysaccharide production by immobilized Aureobasidium pullulans cells in batch bioreactors. Microbiol Res 156:285–288

    CAS  PubMed  Google Scholar 

  • West TP, Strohfus BR-H (1996) Polysaccharide production by sponge-immobilized cells of the fungus Aureobasidium pullulans. Lett Appl Microbiol 22:162–164

    CAS  Google Scholar 

  • West TP (2000) Exopolysaccharide production by entrapped cells of the fungus Aureobasidium pullulans ATCC 201253. J Basic Microbiol 40:5–6

    Google Scholar 

  • West TP (2011) Effect of carbon source on polysaccharide production by alginate-entrapped Aureobasidium pullulans ATCC 42023 cells. J Basic Microbiol. doi:https://doi.org/10.1002/jobm.201100048

    CAS  PubMed  Google Scholar 

  • Wiley BJ, Ball DH, Arcidiacono SM, Kaplan DL (1993) Control of molecular weight distribution of the biopolymer pullulan produced by Aureobasidium pullulans. J Environ Polym Degrad 1:3–9

    CAS  Google Scholar 

  • World Health Organization (1979) Occupational safety and health administration. http://www.osha.gov/

  • Wu S, Jin Z, Tong Q, Chen H (2009) Sweet potato: a novel substrate for pullulan production by Aureobasidium pullulans. Carbohydr Polym 76:645–649

    CAS  Google Scholar 

  • Wu S, Chen H, Jin Z, Tong Q (2010) Effect of two-stage temperature on pullulan production by Aureobasidium pullulans. World J Microbiol Biotechnol 26:737–741

    CAS  Google Scholar 

  • Yamasaki H, Lee M-S, Tanaka T, Nakanishi K (1993) Improvement of performance for cross-flow membrane filtration of pullulan broth. Appl Microbiol Biotechnol 39:21–25.

    CAS  PubMed  Google Scholar 

  • Youssef F, Roukas T, Biliaderis CG (1999) Pullulan production by a non-pigmented strain of Aureobasidium pullulans using batch and fed-batch culture. Process Biochem 34:355–366

    CAS  Google Scholar 

  • Yuen S (1974) Pullulan and its applications. Process Biochem 9:7–9

    CAS  Google Scholar 

  • Zheng W, Campbell BS, McDougall BM, Seviour RJ (2008) Effects of melanin on the accumulation of exopolysaccharides by Aureobasidium pullulans. Bioresour Technol 99:7480–7486

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Demirci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, KC., Demirci, A. & Catchmark, J.M. Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92, 29–44 (2011). https://doi.org/10.1007/s00253-011-3477-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3477-y

Keywords

Navigation