Skip to main content
Log in

Degradation of chlorinated nitroaromatic compounds

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Chlorinated nitroaromatic compounds (CNAs) are persistent environmental pollutants that have been introduced into the environment due to the anthropogenic activities. Bacteria that utilize CNAs as the sole sources of carbon and energy have been isolated from different contaminated and non-contaminated sites. Microbial metabolism of CNAs has been studied, and several metabolic pathways for degradation of CNAs have been proposed. Detoxification and biotransformation of CNAs have also been studied in various fungi, actinomycetes and bacteria. Several physicochemical methods have been used for treatment of wastewater containing CNAs; however, these methods are not suitable for in situ bioremediation. This review describes the current scenario of the degradation of CNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arora PK, Jain RK (2011a) Biotransformation of 4-chloro-2-nitrophenol into 5-chloro-2-methylbenzoxazole by a marine Bacillus sp. strain MW-1. Biodegradation. doi:10.1007/s10532-011-9512-y

  • Arora PK, Jain RK (2011b) Pathway for degradation of 4-chloro-2-nitrophenol by Arthrobacter sp. SJCon. Curr Microbiol 63:568–573

    Article  CAS  Google Scholar 

  • Arora PK, Kumar M, Chauhan A, Raghava GP, Jain RK (2009) OxDBase: a database of oxygenases involved in biodegradation. BMC Res Notes 2:67

    Article  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegrad 1:110

    Article  Google Scholar 

  • Betts JJ, James SP, Thorpe WV (1955) The metabolism of pentachloronitrobenzene and 2,3,4,6-tetrachloronitrobenzene and the formation of mercapturic acids in the rabbit. Biochem J 61:611–617

    CAS  Google Scholar 

  • Beunink J, Rehm HJ (1990) Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Appl Microbiol Biotechnol 34:108–115

    Article  CAS  Google Scholar 

  • Bhushan B, Samanta SK, Chauhan A, Chakraborti AK, Jain RK (2000) Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem Biophys Res Commun 275:129–133

    Article  CAS  Google Scholar 

  • Bruhn C, Bayly RC, Knackmuss HJ (1988) The in vivo construction of 4-chloro-2-nitrophenol assimilatory bacteria. Arch Microbiol 150:171–177

    Article  CAS  Google Scholar 

  • Capek A, Simek A, Leiner J, Weichet J (1970) Antimicrobial agents. VII. Microbial degradation of the antifungal agent 2-chloro-4-nitrophenol (Nitrofungin). Folia Microbiol (Praha) 15:350–353

    Article  CAS  Google Scholar 

  • Chacke CI, Lockwood JL, Zabik M (1966) Chlorinated hydrocarbon pesticides: degradation by microbes. Science 154:893–895

    Article  CAS  Google Scholar 

  • Chauhan A, Chakraborti AK, Jain RK (2000) Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun 270:733–740

    Article  CAS  Google Scholar 

  • de Vos RH, ten Noever de Brauw MC, Olthof PDA (1974) Residues of pentachloronitrobenzene and related compounds in greenhouse soils. Bull Environ Contam Toxicol 11:567–571

    Article  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial degradation of chlorinated benzenes. Biodegradation 19:463–480

    Article  CAS  Google Scholar 

  • Gharbani P, Khosravi M, Tabatabaii SM, Zare K, Dastmalchi S, Mehrizad A (2010) Degradation of trace aqueous 4-chloro-2-nitrophenol occurring in pharmaceutical industrial wastewater by ozone. Int J Environ Sci Technol 7:377–384

    CAS  Google Scholar 

  • Ghosh A, Khurana M, Chauhan A, Takeo M, Chakraborti AK, Jain RK (2010) Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environ Sci Technol 44:1069–1077

    Article  CAS  Google Scholar 

  • Gonzalez LF, Sarria V, Sanchez OF (2010) Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/U. Bioresour Technol 101:3493–3499

    Article  CAS  Google Scholar 

  • Holliger C, Wohlfarth G, Diekert G (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22:383–398

    Article  CAS  Google Scholar 

  • Jechorek M, Wendlandt KD, Beck M (2003) Cometabolic degradation of chlorinated aromatic compounds. J Biotechnol 102:93–98

    Article  CAS  Google Scholar 

  • Ju KS, Parales RE (2009) Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes. Microb Biotechnol 2:241–252

    Article  CAS  Google Scholar 

  • Ju KS, Parales RE (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74:250–272

    Article  CAS  Google Scholar 

  • Kanaly RA, Kim IS, Hur HG (2005) Biotransformation of 3-methyl-4-nitrophenol, a main product of the insecticide fenitrothion, by Aspergillus niger. J Agric Food Chem 53:6426–6431

    Article  CAS  Google Scholar 

  • Karn SK, Chakrabarti SK, Reddy MS (2011) Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill. Biodegradation 22:63–69

    Article  CAS  Google Scholar 

  • Katsivela E, Wray V, Pieper DH, Wittich RM (1999) Initial reactions in the biodegradation of 1-chloro-4-nitrobenzene by a newly isolated bacterium, strain LW1. Appl Environ Microbiol 65:1405–1412

    CAS  Google Scholar 

  • Klecka GM, Maier WJ (1988) Kinetics of microbial growth on mixtures of pentachlorophenol and chlorinated aromatic compounds. Biotechnol Bioeng 31:328–335

    Article  CAS  Google Scholar 

  • Kogel W, Müller WF, Coulston F, Korte F (1979) Biotransformation of pentachloronitrobenzene-14C in rhesus monkeys after single and chronic oral administration. Chemosphere 8:97–105

    Article  Google Scholar 

  • Korde VM, Phelps TJ, Bienkowski PR, White DC (1993) Biodegradation of chlorinated aliphatics and aromatic compounds in total-recycle expanded-bed biofilm reactors. Appl Biochem Biotechnol 39:631–641

    Article  Google Scholar 

  • Kuhlmann A, Hegemann W (1997) Degradation of monochloronitrobenzenes by Pseudomonas acidovorans CA50. Acta Hydrochim Hydrobiol 25:298–305

    Article  CAS  Google Scholar 

  • Larsen GL, Huwe JK, Bakke JE (1998) Intermediary metabolism of pentachloronitrobenzene in the control and germ-free rat and rat with cannulated bile ducts. Xenobiotica 28:973–984

    Article  CAS  Google Scholar 

  • Lenke H, Knackmuss HJ (1996) Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Appl Environ Microbiol 62:784–790

    CAS  Google Scholar 

  • Li Q, Minami M, Hanaoka, Yamamura Y (1999) Acute immunotoxicity of p-chloronitrobenzene in mice: II. Effect of p-chloronitrobenzene on the immunophenotype of murine splenocytes determined by flow cytometry. Toxicology 137:35–45

    Article  CAS  Google Scholar 

  • Li B, Xu X, Zhu L (2009) Ozonation of chloronitrobenzenes in aqueous solution: kinetics and mechanism. J Chem Tech Biotechnol 84:167–175

    Article  CAS  Google Scholar 

  • Li BZ, Xu XY, Zhu L (2010) Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds. J Zhejiang Univ-Sc B 11:177–189

    Article  CAS  Google Scholar 

  • Li R, Zheng JW, Ni B, Chen K, Yang XJ, Li SP, Jiang JD (2011) Biodegradation of pentachloronitrobenzene by Labrys portucalensis pcnb-21 isolated from polluted soil. Pedosphere 21:31–36

    Article  Google Scholar 

  • Lievremont D, SeigleMurandi F, BenoitGuyod JL, Steiman R (1996) Biotransformation and biosorption of pentachloronitrobenzene by fungal mycelia. Mycol Res 100:948–954

    Article  CAS  Google Scholar 

  • Lievremont D, SeigleMurandi F, BenoitGuyod JL (1998) Removal of PCNB from aqueous solution by a fungal adsorption process. Water Res 32:3601–3606

    Article  CAS  Google Scholar 

  • Liu H, Wang SJ, Zhou NY (2005) A new isolate of Pseudomonas stutzeri that degrades 2-chloronitrobenzene. Biotechnol Lett 27:275–278

    Article  CAS  Google Scholar 

  • Liu L, Jiang CY, Liu XY, Wu JF, Han JG, Liu SJ (2007a) Plant–microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1. Environ Microbiol 9:465–473

    Article  CAS  Google Scholar 

  • Liu L, Wu JF, Ma YF, Wang SY, Zhao GP, Liu SJ (2007b) A novel deaminase involved in chloronitrobenzene and nitrobenzene degradation with Comamonas sp. strain CNB-1. J Bacteriol 189:2677–2682

    Article  CAS  Google Scholar 

  • Liu H, Wang SJ, Zhang JJ, Dai H, Tang H, Zhou NY (2011) Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1. Appl Environ Microbiol 77:4547–4552

    Article  CAS  Google Scholar 

  • Livingston AG (1993) A novel membrane bioreactor for detoxifying industrial wastewater: II. Biodegradation of 3-chloronitrobenzene in an industrially produced wastewater. Biotechnol Bioeng 41:927–936

    Article  CAS  Google Scholar 

  • Ma YF, Wu JF, Wang SY, Jiang CY, Zhang Y, Qi SW, Liu L, Zhao GP, Liu SJ (2007) Nucleotide sequence of plasmid pCNB1 from Comamonas strain CNB-1 reveals novel genetic organization and evolution for 4-chloronitrobenzene degradation. Appl Environ Microbiol 73:4477–4483

    Article  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507

    CAS  Google Scholar 

  • Murphy SE, Drotar AM, Fall AR (1982) Biotransformation of the fungicide pentachloronitrobenzene by Tetrahymena thermophila. Chemosphere 11:33–39

    Article  CAS  Google Scholar 

  • Murthy BKN, Kaufman DD (1978) Degradation of pentachloronitrobenzene (PCNB) in anaerobic soils. J Agric Food Chem 26:1151–1156

    Article  CAS  Google Scholar 

  • Nair RS, Johannsen FR, Levinskas GJ, Terrill JB (1986) Assessment of toxicity of o-nitrochlorobenzene in rats following a 4-week inhalation exposure. Fundam Appl Toxicol 7:609–614

    Article  CAS  Google Scholar 

  • Nakanishi T, Oku H (1969) Metabolism and accumulation of pentachloronitrobenzene by phytopathogenic fungi in relation to selective toxicity. Phytopathology 59:1761–1762

    CAS  Google Scholar 

  • Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, Zhou NY (2009) Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73. Environ Pollut 157:763–771

    Article  CAS  Google Scholar 

  • Pandey J, Heipieper HJ, Chauhan A, Arora PK, Prakash D, Takeo M, Jain RK (2011) Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98. Appl Microbiol Biotechnol 92:597–607

    Article  CAS  Google Scholar 

  • Park HS, Lim SJ, Chang YK, Livingston AG, Kim HS (1999) Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp. Appl Environ Microbiol 65:1083–1091

    CAS  Google Scholar 

  • Prakash D, Kumar R, Jain RK, Tiwary BN (2011) Novel pathway for the degradation of 2-chloro-4-nitrobenzoic acid by Acinetobacter sp. strain RKJ12. Appl Environ Microbiol 77:6606–6613

    Article  CAS  Google Scholar 

  • Priya MH, Madras G (2006) Kinetics of photocatalytic degradation of phenols with multiple substituent groups. J Photochem Photobiol 179:256–262

    Article  CAS  Google Scholar 

  • Renner G (1980) Metabolic studies on pentachloronitrobenzene (PCNB) in rats. Xenobiotica 10:537–550

    Article  CAS  Google Scholar 

  • Renner G (1981) Biotransformation of the fungicides hexachlorobenzene and pentachloronitrobenzene. Xenobiotica 11:435–446

    Article  CAS  Google Scholar 

  • Renner G, Nguyen PT (1984) Mechanisms of the reductive denitration of pentachloronitrobenzene (PCNB) and the reductive dechlorination of hexachlorobenzene (HCB). Xenobiotica 14:705–710

    Article  CAS  Google Scholar 

  • Renner G, Ruckdeschel G (1983) Effects of pentachloronitrobenzene and some of its known and possible metabolites on fungi. Appl Environ Microbiol 46:765–768

    CAS  Google Scholar 

  • Rieger PG, Preuss A, Sinnwell V, Francke W, Lenke H, Knackmuss HJ (1994) H2 additions as initial steps of aerobic degradation of 2,4,6-trinitrophenol (picric acid), abstr. Q-120, p. 409. In: Abstracts of the 94th General Meeting of the American Society for Microbiology 1994. American Society for Microbiology, Washington, DC

  • Sabbioni G, Jones CR, Sepai O, Liu YY, Yan H (2007) Urinary metabolites and health effects in workers exposed chronically to chloronitrobenzene. Biomarkers 12:1–20

    Article  Google Scholar 

  • Sahasrabudhe SR, Modi VV (1987) Microbial degradation of chlorinated aromatic compounds. Microbiol Sci 4:300–303

    CAS  Google Scholar 

  • Saritha P, Aparna C, Himabindu V, Anjaneyulu Y (2007) Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol. J Hazard Mater 149:609–614

    Article  CAS  Google Scholar 

  • Schenzle A, Lenke H, Spain JC, Knackmuss HJ (1999) Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134. Appl Environ Microbiol 65:2317–2323

    CAS  Google Scholar 

  • Shen JM, Chen ZL, Xu ZZ, Li XY, Xu BB, Qi F (2008) Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. J Hazard Mater 152:1325–1331

    Article  CAS  Google Scholar 

  • Smith AG, Francis JE (1983) Evidence for the active renal secretion of S-pentachlorophenyl-N-acetyl-L-cysteine by female rats. Biochem Pharmacol 2:3797–3801

    Article  Google Scholar 

  • Spain JC (1995a) Bacterial degradation of nitroaromatic compounds under aerobic conditions. Environ Sci Res 49:19–35232

    CAS  Google Scholar 

  • Spain JC (1995b) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555

    Article  CAS  Google Scholar 

  • Susarla S, Masunaga S, Yonezawa Y (1996) Transformations of chloronitrobenzenes in anaerobic sediment. Chemosphere 32:967–977

    Article  Google Scholar 

  • Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850

    Article  CAS  Google Scholar 

  • Tabak HH, Chambers CW, Kabler PW (1964) Microbial metabolism of aromatic compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J Bacteriol 87:910–919

    CAS  Google Scholar 

  • Takagi K, Iwasaki A, Kamei I, Satsuma K, Yoshioka Y, Harada N (2009) Aerobic mineralization of hexachlorobenzene by newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD653. Appl Environ Microbiol 75:4452–4458

    Article  CAS  Google Scholar 

  • Tas DO, Pavlostathis SG (2005) Microbial reductive transformation of pentachloronitrobenzene under methanogenic conditions. Environ Sci Technol 39:8264–8272

    Article  CAS  Google Scholar 

  • Tas DO, Pavlostathis SG (2007) Temperature and pH effect on the microbial reductive transformation of pentachloronitrobenzene. J Agric Food Chem 55:5390–5398

    Article  CAS  Google Scholar 

  • Tas DO, Pavlostathis SG (2008) Effect of nitrate reduction on the microbial reductive transformation of pentachloronitrobenzene. Environ Sci Technol 42:3234–3240

    Article  Google Scholar 

  • Tas DO, Pavlostathis SG (2010) Microbial transformation of pentachloronitrobenzene under nitrate reducing conditions. Biodegradation 21:691–702

    Article  Google Scholar 

  • Thiele J, Muller R, Lingens F (1988) Enzymatic dehalogenation of chlorinated nitroaromatic compounds. Appl Environ Microbiol 54:1199–1202

    CAS  Google Scholar 

  • Torres RM, Grosset C, Steiman R, Alary J (1996) Liquid chromatography study of degradation and metabolism of pentachloronitrobenzene by four soil micromycetes. Chemosphere 33:683–692

    Article  Google Scholar 

  • Travlos GS, Mahler J, Ragan HA, Chou BJ, Bucher JR (1996) Thirteen-week inhalation toxicity of 2- and 4-chloronitrobenzene in F344/N rats and B6C3F1 mice. Fundam Appl Toxicol 30:75–92

    Article  CAS  Google Scholar 

  • van der Meer JR (1997) Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 7:159–178

    Article  Google Scholar 

  • Vilhunen S, Sillanpaa M (2010) Recent developments in photochemical and chemical AOPs in water treatment: a mini review. Rev Environ Sci Biotechnol 9:323–330

    Article  CAS  Google Scholar 

  • Volskay VT, Grady CPL (1990) Respiration inhibition kinetic-analysis. Water Res 24:863–874

    Article  CAS  Google Scholar 

  • Wu JF, Sun CW, Jiang CY, Liu ZP, Liu SJ (2005) A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1: purification, properties, genetic cloning and expression in Escherichia coli. Arch Microbiol 183:1–8

    Article  CAS  Google Scholar 

  • Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72:1759–1765

    Article  CAS  Google Scholar 

  • Wu HZ, Wei CH, Wang YQ, He QC, Liang SZ (2009) Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1. J Environ Sci-China 21:89–95

    Article  CAS  Google Scholar 

  • Xiao Y, Wu JF, Liu H, Wang SJ, Liu SJ, Zhou NY (2006) Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Appl Microbiol Biotechnol 73:166–171

    Article  CAS  Google Scholar 

  • Yamamoto K, Nishimura M, Kato D, Takeo M, Negoro S (2011) Identification and characterization of another 4-nitrophenol degradation gene cluster, nps, in Rhodococcus sp. strain PN1. J Biosci Bioeng 111:687–694

    Article  CAS  Google Scholar 

  • Yin Y, Zhou NY (2010) Characterization of MnpC, a hydroquinone dioxygenase likely involved in the meta-nitrophenol degradation by Cupriavidus necator JMP134. Curr Microbiol 61:471–476

    Article  CAS  Google Scholar 

  • Zhao JS, Ward OP (1999) Microbial degradation of nitrobenzene and mono-nitrophenol by bacteria enriched from municipal activated sludge. Can J Microbiol 45:427–432

    Article  CAS  Google Scholar 

  • Zhen D, Liu H, Wang SJ, Zhang JJ, Zhao F, Zhou NY (2006) Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73. Appl Microbiol Biotechnol 72:797–803

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the University Grants Commission, New Delhi under Dr. D. S. Kothari Postdoctoral Fellowship Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Arora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, P.K., Sasikala, C. & Ramana, C.V. Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol 93, 2265–2277 (2012). https://doi.org/10.1007/s00253-012-3927-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-3927-1

Keywords

Navigation