Skip to main content

Advertisement

Log in

Immobilized metal ion affinity chromatography: a review on its applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

After 35 years of development, immobilized metal ion affinity chromatography (IMAC) has evolved into a popular protein purification technique. This review starts with a discussion of its mechanism and advantages. It continues with its applications which include the purification of histidine-tagged proteins, natural metal-binding proteins, and antibodies. IMAC used in conjunction with mass spectroscopy for phosphoprotein fractionation and proteomics is also covered. Finally, this review addresses the developments, limitations, and considerations of IMAC in the biopharmaceutical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity-chromatography. Anal Biochem 154:250–254. doi:10.1016/0003-2697(86)90523-3

    CAS  Google Scholar 

  • Anguenot R, Yelle S, Nguyen-Quoc B (1999) Purification of tomato sucrose synthase phosphorylated isoforms by Fe(III)-immobilized metal affinity chromatography. Arch Biochem Biophys 365:163–169. doi:10.1006/abbi.1999.1146

    CAS  Google Scholar 

  • Arnold FH (1991) Metal-affinity separations: a new dimension in protein processing. Biotechnology (NY) 9:151–156. doi:10.1038/nbt0291-151

    CAS  Google Scholar 

  • Bernaudat F, Bülow L (2006) Combined hydrophobic-metal binding fusion tags for applications in aqueous two-phase partitioning. Protein Expr Purif 46:438–445. doi:10.1016/j.pep. 2005.09.026

    CAS  Google Scholar 

  • Beyersmann D (2002) Effects of carcinogenic metals on gene expression. Toxicol Lett 127:63–68. doi:10.1016/S0378-4274(01)00484-2

    CAS  Google Scholar 

  • Blair DE, Hekmat O, Schüttelkopf AW, Shrestha B, Tokuyasu K, Withers SG, van Aalten DM (2006) Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum. Biochemistry 45:9416–9426. doi:10.1021/bi0606694

    CAS  Google Scholar 

  • Block H, Kubicek J, Labahn J, Roth U, Schafer F (2008) Production and comprehensive quality control of recombinant human interleukin-1β: a case study for a process development strategy. Protein Expr Purif 27:244–254. doi:10.1016/j.pep.2007.09.019

    Google Scholar 

  • Block H, Maertens B, Spriestersbach A, Brinker N, Kubicek J, Fabis R, Labahn J, Schäfer F (2009) Immobilized-metal affinity chromatography (IMAC): a review. Methods Enzymol 463:439–473. doi:10.1016/S0076-6879(09)63027-5

    CAS  Google Scholar 

  • Boden V, Winzerling JJ, Vijayalakshmi M, Porath J (1995) Rapid one-step purification of goat immunoglobulins by immobilized metal ion affinity chromatography. J Immunol Methods 181:225–232. doi:10.1016/0022-1759(95)00006-V

    CAS  Google Scholar 

  • Borrebaeck CA, Lönnerdal B, Etzler ME (1981) Metal ion content of Dolichos biflorus lectin and effect of divalent cations on lectin activity. Biochemistry 20:4119–4122. doi:10.1021/bi00517a026

    CAS  Google Scholar 

  • Braun P, Hu Y, Shen B, Halleck A, Koundinya M, Harlow E, LaBaer J (2002) Proteome-scale purification of human proteins from bacteria. Proc Natl Acad Sci (USA) 99:2654–2659. doi:10.1073/pnas.042684199

    CAS  Google Scholar 

  • Bresolin IT, Borsoi-Ribeiro M, Tamashiro WM, Augusto EF, Vijayalakshmi MA, Bueno SM (2010) Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG(1) monoclonal antibodies purification: the effect of chelating ligand and support. Appl Biochem Biotechnol 160:2148–2165. doi:10.1007/s12010-009-8734-5

    CAS  Google Scholar 

  • Cao P, Stults JT (1999) Phosphopeptide analysis by on-line immobilized metal-ion affinity chromatography-capillary electrophoresis-electrospray ionization mass spectrometry. J Chromatogr A 853:225–235. doi:10.1016/S0021-9673(99)00481-1

    CAS  Google Scholar 

  • Carlsson J, Porath J, Lönnerdal B (1977) Isolation of lactoferrin from human milk by metal-chelate affinity chromatography. FEBS Lett 75:89–92. doi:10.1016/0014-5793(77)80059-8

    CAS  Google Scholar 

  • Casey JL, Keep PA, Chester KA, Robson L, Hawkins RE, Begent RH (1995) Purification of bacterially expressed single chain Fv antibodies for clinical applications using metal chelate chromatography. J Immunol Methods 179:105–116. doi:10.1016/0022-1759(94)00278-5

    CAS  Google Scholar 

  • Cass B, Pham PL, Kamen A, Durocher Y (2005) Purification of recombinant proteins from mammalian cell culture using a generic double-affinity chromatography scheme. Protein Expr Purif 40:77–85. doi:10.1016/j.pep. 2004.10.023

    CAS  Google Scholar 

  • Cawston TE, Tyler JA (1979) Purification of pig synovial collagenase to high specific activity. Biochem J 183:647–656

    CAS  Google Scholar 

  • Chaga GS (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334. doi:10.1016/S0165-022X(01)00206-8

    CAS  Google Scholar 

  • Chang M, Bolton JL, Blond SY (1999) Expression and purification of hexahistidine-tagged human glutathione S-transferase P1-1 in Escherichia coli. Protein Expr Purif 17:443–448. doi:10.1006/prep.1999.1149

    CAS  Google Scholar 

  • Clemmitt RH, Chase HA (2000) Facilitated downstream processing of a histidine-tagged protein from unclarified E. coli homogenates using immobilized metal affinity expanded-bed adsorption. Biotechnol Bioeng 67:206–216. doi:10.1002/(SICI)1097-0290(20000120)67:2<206::AID-BIT10>3.0.CO;2-X

    CAS  Google Scholar 

  • Coppenhaver DH (1986) Nickel chelate chromatography of human immune interferon. Methods Enzymol 119:199–204

    CAS  Google Scholar 

  • Crowe J, Dobeli H, Gentz R, Hochuli E, Stuber D, Henco K (1994) 6xHis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol Biol 31:371–381. doi:10.1385/0-89603-258-2:371

    CAS  Google Scholar 

  • Cunningham BC, Bass S, Fuh G, Wells JA (1990) Zinc mediation of the binding of human growth hormone to the human prolactin receptor. Science 250:1709–1712. doi:10.1126/science.2270485

    CAS  Google Scholar 

  • Deepa M, Priya S (2012) Purification and characterization of a novel anti-proliferative lectin from Morus alba L. leaves. Protein Pept Lett 19:839–845

    CAS  Google Scholar 

  • Esfandiar S, Hashemi-Najafabadi S, Shojaosadati SA, Sarrafzadeh SA, Pourpak Z (2010) Purification and refolding of Escherichia coli-expressed recombinant human interleukin-2. Biotechnol Appl Biochem 55:209–214. doi:10.1042/BA20090256

    CAS  Google Scholar 

  • Everberg H, Clough J, Henderson P, Jergil B, Tjerneld F, Ramírez IB (2006) Isolation of Escherichia coli inner membranes by metal affinity two-phase partitioning. J Chromatogr A 1118:244–252. doi:10.1016/j.chroma.2006.03.123

    CAS  Google Scholar 

  • Feldman PA, Bradbury PI, Williams JD, Sims GE, Mcphee JW, Pinnell MA, Harris L, Crombie GI, Evans DR (1994) Large-scale preparation and biochemical characterization of a new high purity factor IX concentrate prepared by metal chelate affinity chromatography. Blood Coagul Fibrinolysis 5:939–948. doi:10.1097/00001721-199412000-00010

    CAS  Google Scholar 

  • Felix K, Fakelman F, Hartmann D, Giese NA, Gaida MM, Schnoelzer M, Flad T, Buechler MW, Werner J (2011) Identification of serum proteins involved in pancreatic cancer cachexia. Life Sci 88:218–225. doi:10.1016/j.lfs.2010.11.011

    CAS  Google Scholar 

  • Franken KL, Hiemstra HS, van Meijgaarden KE, Subronto Y, den Hartigh J, Ottenhoff TH, Drijfthout JW (2000) Purification of His-tagged proteins by immobilized chelate affinity chromatography: the benefits from the use of organic solvents. Protein Expr Purif 18:95–99. doi:10.1006/prep. 1999.1162

    CAS  Google Scholar 

  • Gaberc-Porekar V, Menart V, Jevsevar S, Vidensek A, Stalc A (1999) Histidines in affinity tags and surface clusters for immobilized metal-ion affinity chromatography of trimeric tumor necrosis factor alpha. J Chromatogr A 852:117–128. doi:10.1016/S0021-9673(99)00374-X

    CAS  Google Scholar 

  • Gräslund S, Nordlund P, Weigelt J (2008) Protein production and purification. Nat Methods 5:135–146. doi:10.1038/nmeth.f.202

    Google Scholar 

  • Grisshammer R, Tucker J (1997) Quantitative evaluation of neurotensin receptor purification by immobilized metal affinity chromatography. Protein Expr Purif 11:53–60. doi:10.1006/prep. 1997.0766

    CAS  Google Scholar 

  • Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45:593–615

    CAS  Google Scholar 

  • Hale JE, Beidler DE (1994) Purification of humanized murine and murine monoclonal antibodies using immobilized metal-affinity chromatography. Anal Biochem 222:29–33. doi:10.1006/abio.1994.1449

    CAS  Google Scholar 

  • Halliwell CM, Morgan G, Ou CP, Cass AE (2001) Introduction of a (poly)histidine tag in l-lactate dehydrogenase produces a mixture of active and inactive molecules. Anal Biochem 295:257–261. doi:10.1006/abio.2001.5182

    CAS  Google Scholar 

  • Haupt K, Roy F, Vijayalakshmi MA (1996) Immobilized metal ion affinity capillary electrophoresis of proteins-a model for affinity capillary electrophoresis using soluble polymer-supported ligands. Anal Biochem 234:149–154. doi:10.1006/abio.1996.0066

    CAS  Google Scholar 

  • Hemdan ES, Zhao YJ, Sulkowski E, Porath J (1989) Surface topography of histidine residues: a facile probe by immobilized metal ion affinity chromatography. Proc Natl Acad Sci (USA) 86:1811–1815. doi:10.1073/pnas.86.6.1811

    CAS  Google Scholar 

  • Hober S, Uhlen M (2008) Human protein atlas and the use of microarray technologies. Curr Opin Biotechnol 19:30–35. doi:10.1016/j.copbio.2007.11.006

    CAS  Google Scholar 

  • Hochuli E (1989) Genetically designed affinity chromatography using a novel metal chelate adsorbent. Biologically Active Mol 411:217–239

    Google Scholar 

  • Hochuli E, Döbeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411:177–184. doi:10.1016/S0021-9673(00)93969-4

    CAS  Google Scholar 

  • Hochuli E, Bannwarth W, Dobeli H, Gentz R, Stuber D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Biotechnology 6:1321–1325. doi:10.1038/nbt1188-1321

    CAS  Google Scholar 

  • Horvath Z, Nagydiosi G (1975) Imino-diacetic-acid-ethyl-cellulose and its chelate forming behavior-1. J Inorg Nucl Chem 37:767–769. doi:10.1016/0022-1902(75)80536-7

    CAS  Google Scholar 

  • Hubert P, Porath J (1980) Metal chelate affinity chromatography. I. Influence of various parameters on the retention of nucleotides and related compounds. J Chromatogr 198:247–255. doi:10.1016/S0021-9673(00)84764-0

    CAS  Google Scholar 

  • Imsoonthornruksa S, Noisa P, Parnpai R, Ketudat-Cairns M (2011) A simple method for production and purification of soluble and biologically active recombinant human leukemia inhibitory factor (hLIF) fusion protein in Escherichia coli. J Biotechnol 151:295–302. doi:10.1016/j.jbiotec.2010.12.020

    CAS  Google Scholar 

  • Janknecht R, de Martynoff G, Lou J, Hipskind RA, Nordheim A, Stunnenberg HG (1991) Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccinia virus. Proc Natl Acad Sci (USA) 88:8972–8976. doi:10.1073/pnas.88.20.8972

    CAS  Google Scholar 

  • Jones C, Patel A, Griffin S, Martin J, Young P, O’Donnell K, Silverman C, Porter T, Chaiken I (1995) Current trends in molecular recognition and bioseparation. J Chromatogr A 707:3–22. doi:10.1016/0021-9673(95)00466-Z

    CAS  Google Scholar 

  • Kagedal L (2011) Immobilized metal ion affinity chromatography. In: Janson JC, Ryden L (eds) Protein purification: principles, high-resolution methods, and applications, 3rd edn. Wiley, New York, pp 183–201

    Google Scholar 

  • Kandukuri SS, Noor A, Ranjini SS, Vijayalakshmi MA (2012) Purification and characterization of catalase from sprouted black gram (Vigna mungo) seeds. J Chromatogr B Analyt Technol Biomed Life Sci 889–890:50–54. doi:10.1016/j.jchromb.2012.01.029

    Google Scholar 

  • Kaslow DC, Shiloach J (1994) Production, purification and immunogenicity of a malaria transmission-blocking vaccine candidate: TBV25H expressed in yeast and purified using Ni-NTA agarose. Biotechnology 12:494–499. doi:10.1038/nbt0594-494

    CAS  Google Scholar 

  • Kelley BD, Jakubik J, Vicik S (2008) Viral clearance studies on new and used chromatography resins: critical review of a large dataset. Biologicals 36:88–98. doi:10.1016/j.biologicals.2007.08.001

    CAS  Google Scholar 

  • Kipriyanov SM, Moldenhauer G, Little M (1997) High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J Immunol Methods 200:69–77. doi:10.1016/S0022-1759(96)00188-3

    CAS  Google Scholar 

  • Krishnamurthy R, Madurawe RD, Bush KD, Lumpkin JA (1995) Conditions promoting metal-catalyzed oxidations during immobilized Cu-iminodiacetic acid metal affinity chromatography. Biotechnol Prog 11:643–650. doi:10.1021/bp00036a007

    CAS  Google Scholar 

  • Lai AC, Tsai CF, Hsu CC, Sun YN, Chen YJ (2012) Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Commun Mass Spectrom 26:2186–2194. doi:10.1002/rcm.6327

    CAS  Google Scholar 

  • Laroche-Traineau J, Clofent-Sanchez G, Santarelli X (2000) Three-step purification of bacterially expressed human single-chain Fv antibodies for clinical applications. J Chromatogr B: Biomed Sci Appl 737:107–117. doi:10.1016/S0378-4347(99)00441-7

    CAS  Google Scholar 

  • Li Z, Crooke E (1999) Functional analysis of affinity-purified polyhistidine-tagged DnaA protein. Protein Expr Purif 17:41–48. doi:10.1006/prep. 1999.1094

    CAS  Google Scholar 

  • Li S, Dass C (1999) Iron(III)-immobilized metal ion affinity chromatography and mass spectrometry for the purification and characterization of synthetic phosphopeptides. Anal Biochem 270:9–14. doi:10.1006/abio.1999.4060

    CAS  Google Scholar 

  • Lichty JJ, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Tan S (2005) Comparison of affinity tags for protein purification. Protein Expr Purif 41:98–105. doi:10.1016/j.pep. 2005.01.019

    CAS  Google Scholar 

  • Maisano F, Testori SA, Grandi G (1989) Immobilized metal-ion affinity chromatography of human growth hormone. J Chromatogr 472:422–427. doi:10.1016/S0021-9673(00)94144-X

    CAS  Google Scholar 

  • Müller KM, Arndt KM, Bauer K, Plückthun A (1998) Tandem immobilized metal-ion affinity chromatography/immunoaffinity purification of His-tagged proteins—evaluation of two anti-His-tag monoclonal antibodies. Anal Biochem 259:54–61. doi:10.1006/abio.1998.2606

    Google Scholar 

  • Muszynska G, Andersson L, Porath J (1986) Selective adsorption of phosphoproteins on gel-immobilized ferric chelate. Biochemistry 25:6850–6853. doi:10.1021/bi00370a018

    CAS  Google Scholar 

  • Nilsson J, Ståhl S, Lundeberg J, Uhlén M, Nygren PA (1997) Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr Purif 11:1–16. doi:10.1006/prep. 1997.0767

    CAS  Google Scholar 

  • Noronha S, Kaufman J, Shiloach J (1999) Use of streamline chelating for capture and purification of poly-His-tagged recombinant proteins. Bioseparation 8:145–151. doi:10.1023/A:1008006013469

    CAS  Google Scholar 

  • Pasquinelli RS, Shepherd RE, Koepsel RR, Zhao A, Ataai MM (2000) Design of affinity tags for one-step protein purification from immobilized zinc columns. Biotechnol Prog 16:86–91. doi:10.1021/bp990139h

    CAS  Google Scholar 

  • Patwardhan AV, Goud GN, Koepsel RR, Ataai MM (1997) Selection of optimum affinity tags from a phage-displayed peptide library. Application to immobilized copper(II) affinity chromatography. J Chromatogr A 787:91–100. doi:10.1016/S0021-9673(97)00580-3

    CAS  Google Scholar 

  • Pesliakas H, Zutautas V, Baskeviciute B (1994) Immobilized metal-ion affinity partitioning of NAD(+)-dependent dehydrogenases in poly(ethylene glycol)-dextran two-phase systems. J Chromatogr A 678:25–34. doi:10.1016/0021-9673(94)87070-5

    CAS  Google Scholar 

  • Pham PL, Perret S, Doan HC, Cass B, St-Laurent G, Kamen A, Durocher Y (2003) Large-scale transient transfection of serum free suspension-growing HEK293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency. Biotechnol Bioeng 84:332–342. doi:10.1002/bit.10774

    CAS  Google Scholar 

  • Porath J (1988) High-performance immobilized-metal-ion affinity chromatography of peptides and proteins. J Chromatogr 443:3–11. doi:10.1016/S0021-9673(00)94778-2

    CAS  Google Scholar 

  • Porath J (1992) Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263–281. doi:10.1016/1046-5928(92)90001-D

    CAS  Google Scholar 

  • Porath J, Olin B (1983) Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry 29:1621–1630. doi:10.1021/bi00276a015

    Google Scholar 

  • Porath J, Carlsson J, Olsson I, Belfrage G (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258:598–599. doi:10.1038/258598a0

    CAS  Google Scholar 

  • Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892. doi:10.1021/ac981409y

    CAS  Google Scholar 

  • Prasanna RR, Vijayalakshmi MA (2010) Characterization of metal chelate methacrylate monolithic disk for purification of polyclonal and monoclonal immunoglobulin G. J Chromatogr A 1217:3660–3667. doi:10.1016/j.chroma.2010.03.058

    CAS  Google Scholar 

  • Qian X, Zhou W, Khaledi MG, Tomer KB (1999) Direct analysis of the products of sequential cleavages of peptides and proteins affinity-bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 274:174–180. doi:10.1006/abio.1999.4268

    CAS  Google Scholar 

  • Rana TM (1994) Artificial proteolysis by a metal chelate: methodology and mechanism. Adv Inorg Biochem 10:177–200

    CAS  Google Scholar 

  • Rao L, Jones DP, Nguyen LH, McMahan SA, Burgess RR (1996) Epitope mapping using histidine-tagged protein fragments: application to Escherichia coli RNA polymerase sigma 70. Anal Biochem 241:173–179. doi:10.1006/abio.1996.0395

    CAS  Google Scholar 

  • Rijken DC, Collen D (1981) Purification and characterization of the plasminogen activator secreted by human melanoma cells in culture. J Biol Chem 256:7035–7041

    CAS  Google Scholar 

  • Robert R, Clofent-Sanchez G, Hocquellet A, Jacobin-Valat MJ, Daret D, Noubhani AM, Santarelli X (2006) Large-scale production, bacterial localization assessment and immobilized metal affinity chromatography purification of a human single-chain Fv antibody against alphaIIb-beta3 integrin. Int J Biol Macromol 39:51–59. doi:10.1016/j.ijbiomac.2006.01.014

    CAS  Google Scholar 

  • Roberts PL, Walker CP, Feldman PA (1994) Removal and inactivation of enveloped and non-enveloped viruses during the purification of a high-purity factor IX by metal chelate affinity chromatography. Vox Sang 67(Suppl 1):69–71. doi:10.1111/j.1423-0410.1994.tb00982.x

    CAS  Google Scholar 

  • Rowland SS, Mayner RL, Barker L (2005) Advancing TB vaccines to phase I clinical trials in the US: regulatory/manufacturing/licensing issues. Tuberculosis (Edinb) 85:39–46. doi:10.1016/j.tube.2004.09.012

    Google Scholar 

  • Sainz-Pastor N, Tolner B, Huhalov A, Kogelberg H, Lee YC, Zhu D, Begent RH, Chester KA (2006) Deglycosylation to obtain stable and homogeneous Pichia pastoris-expressed N-A1 domains of carcinoembryonic antigen. Int J Biol Macromol 39:141–150. doi:10.1016/j.ijbiomac.2006.03.022

    CAS  Google Scholar 

  • Sakamoto S, Taura F, Tsuchihashi R, Putalun W, Kinjo J, Tanaka H, Morimoto S (2010) Expression, purification, and characterization of anti-plumbagin single-chain variable fragment antibody in Sf9 insect cell. Hybridoma (Larchmt) 29:481–488. doi:10.1089/hyb.2010.0052

    CAS  Google Scholar 

  • Sawadogo M, Van Dyke MW (1995) Indirect use of immobilized metal affinity chromatography for isolation and characterization of protein partners. Genet Eng (NY) 17:53–65

    CAS  Google Scholar 

  • Serpa G, Augusto EF, Tamashiro WM, Ribeiro MB, Miranda EA, Bueno SM (2005) Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulinG1 monoclonal antibody. J Chromatogr B 816:259–268. doi:10.1016/j.jchromb.2004.11.043

    CAS  Google Scholar 

  • Sharma S, Agarwal GP (2001) Interactions of proteins with immobilized metal ions: a comparative analysis using various isotherm models. Anal Biochem 288:126–140. doi:10.1006/abio.2000.4894

    CAS  Google Scholar 

  • Sinha D, Bakhshi M, Vora R (1994) Ligand binding assays with recombinant proteins refolded on an affinity matrix. Biotechniques 17:509–514

    CAS  Google Scholar 

  • Stowers AW, Zhang Y, Shimp RL, Kaslow DC (2001) Structural conformers produced during malaria vaccine production in yeast. Yeast 18:137–150. doi:10.1002/1097-0061(20010130)18:2<137::AID-YEA657>3.3.CO;2-O

    CAS  Google Scholar 

  • Sulkowski E (1989) The saga of IMAC and MIT. BioEssays 10:170–175. doi:10.1002/bies.950100508

    CAS  Google Scholar 

  • Sun X, Chiu JF, He QY (2005) Application of immobilized metal affinity chromatography in proteomics. Expert Rev Proteomics 2:649–657. doi:10.1586/14789450.2.5.649

    CAS  Google Scholar 

  • Takeda N, Matsuoka T, Gotoh M (2010) Potentiality of IMAC as sample pretreatment tool in food analysis for veterinary drugs. Chromatographia 72:127–131. doi:10.1365/s10337-010-1631-9

    CAS  Google Scholar 

  • Ueda EK, Gout PW, Morganti L (2001) Ni(II)-based immobilized metal ion affinity chromatography of recombinant human prolactin from periplasmic Escherichia coli extracts. J Chromatogr A 922:165–175. doi:10.1016/S0021-9673(01)00875-5

    CAS  Google Scholar 

  • Voss S, Skerra A (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10:975–982. doi:10.1093/protein/10.8.975

    CAS  Google Scholar 

  • Walker PA, Leong LE, Ng PW, Tan SH, Waller S, Murphy D, Porter AG (1994) Efficient and rapid affinity purification of proteins using recombinant fusion proteases. Biotechnology 12:601–605. doi:10.1038/nbt0694-601

    CAS  Google Scholar 

  • Wang W (1999) Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 185:129–188. doi:10.1016/S0378-5173(99)00152-0

    CAS  Google Scholar 

  • Wizemann H, von Brunn A (1999) Purification of E. coli-expressed His-tagged hepatitis B core antigen by Ni2+-chelate affinity chromatography. J Virol Methods 77:189–197. doi:10.1016/S0166-0934(98)00152-9

    CAS  Google Scholar 

  • Wong JW, Albright RL, Wang NHL (1991) Immobilized metal-ion affinity chromatography (IMAC) chemistry and bioseparation applications. Sep Purif Methods 20:49–106. doi:10.1080/03602549108021408

    CAS  Google Scholar 

  • Wu J, Filutowicz M (1999) Hexahistidine (His6)-tag dependent protein dimerization: a cautionary tale. Acta Biochim Pol 46:591–599

    CAS  Google Scholar 

  • Wu C, Wang ZF, Liu LJ, Zhao P, Wang WJ, Yao DK, Shi B, Lu JH, Liao P, Yang YN, Zhu L (2009) Surface enhanced laser desorption/ionization profiling: new diagnostic method of HBV-related hepatocellular carcinoma. J Gastroenterol Hepatol 24:55–62. doi:10.1111/j.1440-1746.2008.05580.x

    CAS  Google Scholar 

  • Ye JY, Zhang XM, Young C, Zhao XL, Hao Q, Cheng L, Jensen ON (2010) Optimized IMAC protocol for phosphopeptide recovery from complex biological samples. J Proteome Res 9:3561–3573. doi:10.1021/pr100075x

    CAS  Google Scholar 

  • Zaveckas M, Baskeviciŭte B, Luksa V, Zvirblis G, Chmieliauskaite V, Bumelis V, Pesliakas H (2000) Comparative studies of recombinant human granulocyte-colony stimulating factor, its Ser-17 and (His) 6-tagged forms interaction with metal ions by means of immobilized metal ion affinity partitioning. Effect of chelated nickel and mercuric ions on extraction and refolding of proteins from inclusion bodies. J Chromatogr A 904:145–169. doi:10.1016/S0021-9673(00)00887-6

    CAS  Google Scholar 

  • Zhang Z, Tong KT, Belew M, Pettersson T, Janson JC (1992) Production, purification and characterization of recombinant human interferon gamma. J Chromatogr 604:143–155. doi:10.1016/0021-9673(92)85539-6

    CAS  Google Scholar 

  • Zhao Y, Gutshall L, Jiang H, Baker A, Beil E, Obmolova G, Carton J, Taudte S, Amegadzie B (2009) Two routes for production and purification of Fab fragments in biopharmaceutical discovery research: papain digestion of mAb and transient expression in mammalian cells. Protein Expr Purif 67:182–189. doi:10.1016/j.pep. 2009.04.012

    CAS  Google Scholar 

  • Zhou H, Xu S, Ye M, Feng S, Pan C, Jiang X, Li X, Han G, Fu Y, Zou H (2006) Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptide and MALDI-TOF MS analysis. J Proteome Res 5:2431–2437. doi:10.1021/pr060162f

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Glen Bolton of Tufts University for inspiring the writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzi Bun Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, R.C.F., Wong, J.H. & Ng, T.B. Immobilized metal ion affinity chromatography: a review on its applications. Appl Microbiol Biotechnol 96, 1411–1420 (2012). https://doi.org/10.1007/s00253-012-4507-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4507-0

Keywords

Navigation