Skip to main content
Log in

Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Frustules, the silica shells of diatoms, have unique porous architectures with good mechanical strength. In recent years, biologists have learned more about the mechanism of biosilica shells formation; meanwhile, physicists have revealed their optical and microfluidic properties, and chemists have identified ways to modify them into various materials while maintaining their hierarchical structures. These efforts have provided more opportunities to use biosilica structures in microsystems and other commercial products. This review focuses on the preparation of biosilica structures and their applications, especially in the development of microdevices. We discuss existing methods of extracting biosilica from diatomite and diatoms, introduce methods of separating biosilica structures by shape and sizes, and summarize recent studies on diatom-based devices used for biosensing, drug delivery, and energy applications. In addition, we introduce some new findings on diatoms, such as the elastic deformable characteristics of biosilica structures, and offer perspectives on planting diatom biosilica in microsystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aw MS, Simovic S, Yu Y, Addai-Mensah J, Losic D (2012) Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol 223:52–58

    Article  CAS  Google Scholar 

  • Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW III, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446(7132):172–175

    Article  CAS  Google Scholar 

  • Bozarth A, Maier U-G, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 82(2):195–201

    Article  CAS  Google Scholar 

  • Brayner R, Couté A, Livage J, Perrette C, Sicard C (2011) Micro-algal biosensors. Anal Bioanal Chem 401(2):581–597

    Article  CAS  Google Scholar 

  • De Stefano L, Larnberti A, Rotiroti L, De Stefano M (2008) Interfacing the nanostructured biosilica microshells of the marine diatom Coscinodiscus wailesii with biological matter. Acta Biomater 4(1):126–130

    Article  Google Scholar 

  • De Stefano L, Maddalena P, Moretti L, Rea I, Rendina I, De Tommasi E, Mocella V, De Stefano M (2009a) Nano-biosilica from marine diatoms: a brand new material for photonic applications. Superlattice Microst 46(1–2):84–89

    Article  Google Scholar 

  • De Stefano L, Rea I, Rendina I, De Stefano M, Moretti L (2007) Lensless light focusing with the centric marinediatom Coscinodiscus walesii. Opt Express 15(26):18082–18088

    Article  Google Scholar 

  • De Stefano L, Rendina I, De Stefano M, Bismuto A, Maddalena P (2005) Marine diatoms as optical chemical sensors. Appl Phys Lett 87(23):233902–233903

    Article  Google Scholar 

  • De Stefano L, Rotiroti L, De Stefano M, Lamberti A, Lettieri S, Setaro A, Maddalena P (2009b) Marine diatoms as optical biosensors. Biosens Bioelectron 24(6):1580–1584

    Article  Google Scholar 

  • Dickerson MB, Sandhage KH, Naik RR (2008) Protein- and peptide-directed syntheses of inorganic materials. Chem Rev 108(11):4935–4978

    Article  CAS  Google Scholar 

  • Dolatabadi JEN, de la Guardia M (2011) Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. Trac Trend Anal Chem 30(9):1538–1548

    Article  CAS  Google Scholar 

  • Dolatabadi JEN, Mashinchian O, Ayoubi B, Jamali AA, Mobed A, Losic D, Omidi Y, de la Guardia M (2011) Optical and electrochemical DNA nanobiosensors. Trac Trend Anal Chem 30(3):459–472

    Article  CAS  Google Scholar 

  • Fuhrmann T, Landwehr S, El Rharbi-Kucki M, Sumper M (2004) Diatoms as living photonic crystals. Appl Phys B-Lasers O 78(3–4):257–260

    Article  CAS  Google Scholar 

  • Gale DK, Gutu T, Jiao J, Chang C-H, Rorrer GL (2009) Photoluminescence detection of biomolecules by antibody-functionalized diatom biosilica. Adv Funct Mater 19(6):926–933

    Article  CAS  Google Scholar 

  • Garcia AP, Sen D, Buehler MJ (2011) Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness, and strength. Metall Mater Trans A 42A(13):3889–3897

    Article  Google Scholar 

  • Gordon R, Losic D, Tiffany MA, Nagy SS, Sterrenburg FAS (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27(2):116–127

    Article  CAS  Google Scholar 

  • Goren R, Baykara T, Marsoglu M (2002) A study on the purification of diatomite in hydrochloric acid. Scand J Metall 31(2):115–119

    Article  CAS  Google Scholar 

  • Grégorio C (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085

    Article  Google Scholar 

  • Gurel A, Yildiz A (2007) Diatom communities, lithofacies characteristics and paleo environmental interpretation of Pliocene diatomite deposits in the lhlara–Selime plain (Aksaray, Central Anatolia, Turkey). J Asian Earth Sci 30(1):170–180

    Article  Google Scholar 

  • Hale MS, Mitchell JG (2002) Effects of particle size, flow velocity and cell surface microtopography on the motion of submicrometer particles over diatoms. Nano Lett 2(6):657–663

    Article  CAS  Google Scholar 

  • Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421(6925):841–843

    Article  CAS  Google Scholar 

  • Hildebrand M (2003) Biological processing of nanostructured silica in diatoms. Prog Org Coat 47(3):256–266

    Article  CAS  Google Scholar 

  • Huh D, Y-s T, Hamilton GA, Kim HJ, Ingber DE (2012) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164

    Article  CAS  Google Scholar 

  • Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energ Environ Sci 4(10):3930–3941

    Article  CAS  Google Scholar 

  • Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008a) Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process. Acs Nano 2(10):2103–2112

    Article  CAS  Google Scholar 

  • Jeffryes C, Gutu T, Jiao J, Rorrer GL (2008b) Peptide-mediated deposition of nanostructured TiO2 into the periodic structure of diatom biosilica. J Mater Res 23:3255–3262

    Article  CAS  Google Scholar 

  • Jeffryes C, Solanki R, Rangineni Y, Wang W, Chang CH, Rorrer GL (2008c) Electroluminescence and photoluminescence from nanostructured diatom frustules containing metabolically inserted germanium. Adv Mater 20(13):2633

    Article  CAS  Google Scholar 

  • Jia Y, Han W, Xiong G, Yang W (2008) Layer-by-layer assembly of TiO2 colloids onto diatomite to build hierarchical porous materials. J Colloid Interface Sci 323(2):326–331

    Article  CAS  Google Scholar 

  • Karaman S, Karaipekli A, Sarı A, Biçer A (2011) Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 95(7):1647–1653

    Article  CAS  Google Scholar 

  • Korunic Z, Fields PG, Kovacs MIP, Noll JS, Lukow OM, Demianyk CJ, Shibley KJ (1996) The effect of diatomaceous earth on grain quality. Postharvest Biol Technol 9(3):373–387

    Article  CAS  Google Scholar 

  • Lettieri S, Setaro A, De Stefano L, De Stefano M, Maddalena P (2008) The gas-detection properties of light-emitting diatoms. Adv Funct Mater 18(8):1257–1264

    Article  CAS  Google Scholar 

  • Li M, Wu Z, Kao H (2011) Study on preparation and thermal properties of binary fatty acid/diatomite shape-stabilized phase change materials. Sol Energy Mater Sol Cells 95(8):2412–2416

    Article  CAS  Google Scholar 

  • Lin K-C, Kunduru V, Bothara M, Rege K, Prasad S, Ramakrishna BL (2010) Biogenic nanoporous silica-based sensor for enhanced electrochemical detection of cardiovascular biomarkers proteins. Biosens Bioelectron 25(10):2336–2342

    Article  CAS  Google Scholar 

  • Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21(29):2947–2958

    Article  CAS  Google Scholar 

  • Losic D, Rosengarten G, Mitchell JG, Voelcker NH (2006a) Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations. J Nanosci Nanotechnol 6(4):982–989

    Article  CAS  Google Scholar 

  • Losic D, Short K, Mitchell JG, Lal R, Voelcker NH (2007) AFM nanoindentations of diatom biosilica surfaces. Langmuir 23(9):5014–5021

    Article  CAS  Google Scholar 

  • Losic D, Triani G, Evans PJ, Atanacio A, Mitchell JG, Voelcker NH (2006b) Controlled pore structure modification of diatoms by atomic layer deposition of TiO2. J Mater Chem 16(41):4029–4034

    Article  CAS  Google Scholar 

  • Losic D, Yu Y, Aw MS, Simovic S, Thierry B, Addai-Mensah J (2010) Surface functionalisation of diatoms with dopamine modified iron-oxide nanoparticles: toward magnetically guided drug microcarriers with biologically derived morphologies. Chem Comm 46(34):6323–6325

    Article  CAS  Google Scholar 

  • Martin-Jézéquel V, Hildebrand M, Brzezinski MA (2000) Silicon metabolism in diatoms: implications for growth. J Phycol 36(5):821–840

    Article  Google Scholar 

  • Nassif N, Livage J (2011) From diatoms to silica-based biohybrids. Chem Soc Rev 40(2):849–859

    Article  CAS  Google Scholar 

  • Neethirajan S, Gordon R, Wang L (2009) Potential of silica bodies (phytoliths) for nanotechnology. Trends Biotechnol 27(8):461–467

    Article  CAS  Google Scholar 

  • Noll F, Sumper M, Hampp N (2002) Nanostructure of diatom silica surfaces and of biomimetic analogues. Nano Lett 2(2):91–95

    Article  CAS  Google Scholar 

  • Osmanlioglu AE (2007) Natural diatomite process for removal of radioactivity from liquid waste. Appl Radiat Isot 65(1):17–20

    Article  CAS  Google Scholar 

  • Owen RB, Potts R, Behrensmeyer AK, Ditchfield P (2008) Diatomaceous sediments and environmental change in the Pleistocene Olorgesailie Formation, southern Kenya Rift Valley. Palaeogeogr Palaeoclimatol Palaeoecol 269(1–2):17–37

    Article  Google Scholar 

  • Pan J, Cai J, Zhang D, Wang Y, Jiang Y (2012) Micro-arraying of nanostructured diatom microshells on glass substrate using ethylene–vinyl acetate copolymer and photolithography technology for fluorescence spectroscopy application. Physica E. doi:10.1016/j.physe.2012.03.032

  • Park K-H, Gu H-B, Jin EM, Dhayal M (2010) Using hybrid silica-conjugated TiO2 nanostructures to enhance the efficiency of dye-sensitized solar cells. Electrochim Acta 55(19):5499–5505

    Article  CAS  Google Scholar 

  • Parkinson J, Gordon R (1999) Beyond micromachining: the potential of diatoms. Trends Biotechnol 17(5):190–196

    Article  CAS  Google Scholar 

  • Poulsen N, Berne C, Spain J, Kroger N (2007) Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana. Angew Chem Int Ed Engl 46(11):1843–1846

    Article  CAS  Google Scholar 

  • Qin T, Gutu T, Jiao J, Chang CH, Rorrer GL (2008) Photoluminescence of silica nanostructures from bioreactor culture of marine diatom Nitzschia frustulum. J Nanosci Nanotechnol 8(5):2392

    Article  CAS  Google Scholar 

  • Ramachandra TV, Mahapatra DM, Karthick B, Gordon R (2009) Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind Eng Chem Res 48(19):8769–8788

    Article  CAS  Google Scholar 

  • Rolison DR, Long RW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourga ME, Lubers AM (2009) Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 38(1):226–252

    Article  CAS  Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge

    Google Scholar 

  • Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753

    Article  CAS  Google Scholar 

  • Sen D, Buehler MJ (2011) Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci Rep 1. doi:10.1038/srep00035

  • Sheng G, Dong H, Li Y (2012) Characterization of diatomite and its application for the retention of radiocobalt: role of environmental parameters. J Environ Radioact 113:108–115

    Article  CAS  Google Scholar 

  • Stewart MP, Buriak JM (2000) Chemical and biological applications of porous silicon technology. Adv Mater 12(12):859–869

    Article  CAS  Google Scholar 

  • Sumper M, Brunner E (2006) Learning from diatoms: nature's tools for the production of nanostructured silica. Adv Funct Mater 16(1):17–26

    Article  CAS  Google Scholar 

  • Sun W, Puzas JE, Sheu TJ, Liu X, Fauchet PM (2007) Nano- to microscale porous silicon as a cell interface for bone-tissue engineering. Adv Mater 19(7):921–924

    Article  CAS  Google Scholar 

  • Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8(2):198–220

    Article  CAS  Google Scholar 

  • Townley HE, Parker AR, White-Cooper H (2008) Exploitation of diatom frustules for nanotechnology: Tethering active biomolecules. Adv Funct Mater 18(2):369–374

    Article  CAS  Google Scholar 

  • Umemura K, Noguchi Y, Ichinose T, Hirose Y, Kuroda R, Mayama S (2008) Diatom cells grown and baked on a functionalized mica surface. J Biol Phys 34(1–2):189–196

    Article  Google Scholar 

  • Umemura K, Yamada T, Maeda Y, Kobayashi K, Kuroda R, Mayama S (2007) Regulated growth of diatom cells on self-assembled monolayers. J Nanobiotechnol 5:2

    Article  Google Scholar 

  • Wang W, Gutu T, Gale DK, Jiao J, Rorrer GL, Chang C-H (2009) Self-assembly of nanostructured diatom microshells into patterned arrays assisted by polyelectrolyte multilayer deposition and inkjet printing. J Am Chem Soc 131(12):4178–4179

    Article  CAS  Google Scholar 

  • Wang Y, Pan J, Cai J, Li A, Chen M, Zhang D (2011) Assembling and patterning of diatom frustules onto PDMS substrates using photo-assisted chemical bonding. Chem Lett 40(12):1354–1356

    Article  CAS  Google Scholar 

  • Wang Y, Pan J, Cai J, Zhang D (2012a) Floating assembly of diatom Coscinodiscus sp. microshells. Biochem Biophys Res Commun 420(1):1–5

    Article  CAS  Google Scholar 

  • Wang Y, Zhang D, Cai J, Pan J, Chen M, Li A, Jiang Y (2012b) Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method. Appl Microbiol Biotechnol. doi:10.1007/s00253-00012-04080-00256

  • Wang Y, Zhang D, Pan J, Cai J (2012c) Key factors influencing the optical detection of biomolecules by their evaporative assembly on diatom frustules. J Mater Sci 47(17):6315–6325

    Article  CAS  Google Scholar 

  • Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4301

    Article  CAS  Google Scholar 

  • Xiaohua Q, Mingzhu L, Zhenbin C, Rui L (2007) Preparation and properties of diatomite composite superabsorbent. Polym Adv Technol 18(3):184–193

    Article  Google Scholar 

  • Yang W, Lopez PJ, Rosengarten G (2011) Diatoms: self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 136(1):42–53

    Article  CAS  Google Scholar 

  • Yu Y, Addai-Mensah J, Losic D (2012) Functionalized diatom silica microparticles for removal of mercury ions. Science and Technology of Adv Mater 13(1):doi:015008 10.1088/1468-6996/13/1/015008

    Google Scholar 

  • Zhang D, Pan J, Cai J, Wang Y, Jiang Y, Jiang X (2012) Hydrofluoric acid-assisted bonding of diatoms with SiO2-based substrates for microsystem application. J Micromech Microeng 22(3):035021

    Article  Google Scholar 

  • Zhang DY, Wang Y, Pan JF, Cai J (2010) Separation of diatom valves and girdle bands from Coscinodiscus diatomite by settling method. J Mater Sci 45(21):5736–5741

    Article  CAS  Google Scholar 

  • Zhang DY, Wang Y, Zhang WQ, Pan JF, Cai J (2011) Enlargement of diatom frustules pores by hydrofluoric acid etching at room temperature. J Mater Sci 46(17):5665–5671

    Article  CAS  Google Scholar 

  • Zhou H, Fan T, Zhang D (2011) Biotemplated materials for sustainable energy and environment: current status and challenges. ChemSusChem 4(10):1344–1387

    Article  CAS  Google Scholar 

  • Zhu QW, Zhang YH, Zhou FS, Lv FZ, Ye ZF, Fan FD, Chu PK (2011) Preparation and characterization of Cu2O-ZnO immobilized on diatomite for photocatalytic treatment of red water produced from manufacturing of TNT. Chem Eng J 171(1):61–68

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (No. 51075020), the 863 Project of China (No. 2009AA043804), the National Special Fund of Outstanding Doctoral Dissertation of China (No. 2007B32) and the Doctoral Candidate Academic Newcomer Award of Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Cai or Deyuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Cai, J., Jiang, Y. et al. Preparation of biosilica structures from frustules of diatoms and their applications: current state and perspectives. Appl Microbiol Biotechnol 97, 453–460 (2013). https://doi.org/10.1007/s00253-012-4568-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4568-0

Keywords

Navigation