Skip to main content

Advertisement

Log in

Marine bacteria: potential candidates for enhanced bioremediation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacteria are widespread in nature as they can adapt to any extreme environmental conditions and perform various physiological activities. Marine environments are one of the most adverse environments owing to their varying nature of temperature, pH, salinity, sea surface temperature, currents, precipitation regimes and wind patterns. Due to the constant variation of environmental conditions, the microorganisms present in that environment are more suitably adapted to the adverse conditions, hence, possessing complex characteristic features of adaptation. Therefore, the bacteria isolated from the marine environments are supposed to be better utilized in bioremediation of heavy metals, hydrocarbon and many other recalcitrant compounds and xenobiotics through biofilm formation and production of extracellular polymeric substances. Many marine bacteria have been reported to have bioremediation potential. The advantage of using marine bacteria for bioremediation in situ is the direct use of organisms in any adverse conditions without any genetic manipulation. This review emphasizes the utilization of marine bacteria in the field of bioremediation and understanding the mechanism behind acquiring the characteristic feature of adaptive responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdelatey LM, Khalil WKB, Ali TH, Mahrous KF (2011) Heavy metal resistance and gene expression analysis of metal resistance genes in Gram-positive and Gram-negative bacteria present in egyptian soils. J Appl Sci Env San 6:201–211

    CAS  Google Scholar 

  • Abd-Elnaby H, Abou-Elela GM, EI-Sersy NA (2011) Cadmium resisting bacteria in Alexandria Eastern Harbor (Egypt) and optimization of cadmium bioaccumulation by Vibrio harveyi. African J Biotechnol 10:3412–3423

    CAS  Google Scholar 

  • Abou-Shanab RI, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytorem 5:367–380

    CAS  Google Scholar 

  • Aguilar-Barajas E, Paluscio E, Cervantes C, Rensing C (2008) Expression of chromate resistance genes from Shewanella sp. strain ANA-3 in Escherichia coli. FEMS Microbiol Lett 285:97–100

    Article  CAS  Google Scholar 

  • Alexander DE (1999) Encyclopedia of environmental science. Springer, New York, 0-412-74050-8

    Google Scholar 

  • Amidei R (1997) Marine bacteria: a better cleaner-upper? California Agri 51:47–48

    Article  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Poll Bull 62:1596–1605

    Article  CAS  Google Scholar 

  • Balba MT, Al-Awadhi N, Al-Daher R (1998) Bioremediation of oil-contaminated soil: microbiological methods for feasibility assessment and field evaluation. J Microbiol Met 32:155–164

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Banin ED, Vassilakos E, Orr R, Martinez J, Rosenberg E (2003) Superoxide dismutase is a virulence factor produced by the coral bleaching pathogen Vibrio shiloi. Curr Microbiol 46:418–422

    Article  CAS  Google Scholar 

  • Banin E, Khare SK, Naider F, Rosenberg E (2001a) Proline-rich peptide from the coral pathogen Vibrio shiloi that inhibits photosynthesis of zooxanthellae. Appl Environ Microbiol 67:1536–1541

    Article  CAS  Google Scholar 

  • Banin ET, Israely M, Fine Y, Loya RE (2001b) Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol Lett 199:33–37

    Article  CAS  Google Scholar 

  • Bedford RH (1933) Marine bacteria of the northern Pacific Ocean. The temperature range of growth. Contrib Can Biol Fisheries 8:433–438

    Article  Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic Sea ice. Appl Environ Microbiol 63:3068–3078

    CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP (2000) Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  CAS  Google Scholar 

  • Brinkmeyer R, Knitte K, Jurgens J, Weyland H, Amann R, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic Pack Ice. Appl Environ Microbiol 69:6610–6619

    Article  CAS  Google Scholar 

  • Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific Ocean. ISME J 3:1374–1386

    Article  CAS  Google Scholar 

  • Buck JD (1982) Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993

    CAS  Google Scholar 

  • Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS (2012) Microbial scout hypothesis and microbial discovery. Appl Environ Microbiol 78:3229–3233

    Article  CAS  Google Scholar 

  • Canstein H, Kelly S, Li Y, Wagner-Dobler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837

    Article  CAS  Google Scholar 

  • Carvalho CCCR, Fernandes P (2010) Production of metabolites as bacterial responses to the marine environment. Mar Drugs 8:705–727

    Article  CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cheung KH, Gu JD (2003) Reduction of chromate (CrO4 2−) by an enrichment consortium and an isolate of marine sulfate reducing bacteria. Chemosphere 52:1523–1529

    Article  CAS  Google Scholar 

  • Chung WK, King GM (2001) Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl Environ Microbiol 67:5585–5592

    Article  CAS  Google Scholar 

  • Cottrell MT, Kirchman DL (2009) Photoheterotrophic microbes in the Arctic Ocean in summer and winter. Appl Environ Microbiol 75:4958–4966

    Article  CAS  Google Scholar 

  • Crossland CJ, Kremer HH, Lindeboom HJ, Crossland JIM, Le Tissier MDA (eds) (2005) Coastal fluxes in the anthropocene—the land-ocean interactions in the coastal zone project of the International Geosphere-Biosphere Programme. Global change—the International Geosphere-Biosphere Program Series. Springer, Berlin

    Google Scholar 

  • Czyz A, Jasiecki J, Bogdan A, Szpilewska H, Grzyn GW (2000) Genetically modified Vibrio harveyi strains as potential bioindicators of mutagenic pollution of marine environments. Appl Environ Microbiol 66:599–605

    Article  CAS  Google Scholar 

  • Das S, Elavarasi A, Lyla PS, Khan SA (2009) Biosorption of heavy metals by marine bacteria: potential tool for detecting marine pollution. Environ Health 9:38–43

    Google Scholar 

  • Das S, Lyla PS, Khan SA (2006) Marine microbial diversity and ecology: present status and future perspectives. Curr Sci 90:1325–1335

    CAS  Google Scholar 

  • Das S, Shanmugapriya R, Lyla PS, Khan SA (2007) Heavy metal tolerance of marine bacteria—an index of marine pollution. Nat Acad Sci Lett (India) 30:279–284

    CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and importance of bacterial mer genes. Int Biodeterior Biodegrad 75:207–213

    Article  CAS  Google Scholar 

  • Davidson A, Belbin L (2002) Exposure of natural Antarctic marine microbial assemblages to ambient UV radiation: effects on the marine microbial community. Aquat Microb Ecol 27:159–174

    Article  Google Scholar 

  • De Rore H, Top E, Houwen F, Mergcay M, Verstraete W (1994) Evolution of heavy metal-resistant transconjugants in a soil environment with a concomitant selective pressure. FEMS Microbiol Ecol 14:263–273

    Article  Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

    Article  CAS  Google Scholar 

  • Deppe U, Richnow HH, Michaelis W, Antranikian G (2005) Degradation of crude oil by an arctic microbial consortium. Extremophiles 9:461–470

    Article  Google Scholar 

  • Derraik JGB (2002) The pollution of the marine environment by plastic debris: a review. Mar Poll Bull 44:842–852

    Article  CAS  Google Scholar 

  • Diez B, Pedros-Alio C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

    Article  CAS  Google Scholar 

  • Eilers H, Pernthaler J, Glockner FO, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 69:3044–3051

    Article  Google Scholar 

  • El-Deeb B (2009) Natural combination of genetic systems for degradation of phenol and resistance to heavy metals in phenol and cyanide assimilating bacteria. Malaysian J Microbiol 5:94–103

    Google Scholar 

  • Ettema TJ, Andersson SG (2009) The alpha-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 5:429–432

    Article  Google Scholar 

  • Gallego JLR, Loredo J, Lamas JF, Azquez FV, Anchez JS (2001) Bioremediation of diesel-contaminated soils: evaluation of potential in situ techniques by study of bacterial degradation. Biodegradation 12:325–335

    Article  CAS  Google Scholar 

  • Gianoulis TA, Raesb J, Patelc PV, Bjornsond R, Korbelc JO, Letunicb I, Yamadab T, Paccanaroe A, Jensenb LJ, Snyderc M, Borkb P, Gerstein MB (2009) Quantifying environmental adaptation of metabolic pathways in metagenomics. PNAS 106:1374–1379

    Article  CAS  Google Scholar 

  • Gontang ER, Fenical W, Jensen PR (2007) Phylogenetic diversity of Gram-positive bacteria cultured from marine sediment. Appl Environ Microbiol 73:3272–3282

    Article  CAS  Google Scholar 

  • Hase CC, Fedorova ND, Galperin MY, Dibrov PA (2001) Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol Mol Biol Rev 65:353–370

    Article  CAS  Google Scholar 

  • Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT (1999) Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65:251–259

    CAS  Google Scholar 

  • Hollibaugh JT, Lovejoy C, Murray AE (2007) Microbiology in polar oceans. Oceanography 20:140–145

    Article  Google Scholar 

  • Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jorgensen BB (2006) Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. PNAS Microbiol 103:2815–2820

    Article  CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Poll Bull 50:340–343

    Article  CAS  Google Scholar 

  • Jiang P, Li J, Han F, Duan G, Lu X (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 6. doi:10.1371/journal.pone.0018514

  • Kainth P, Gupta RS (2005) Signature proteins that are distinctive of alpha proteobacteria. BMC Genomics. doi:10.1186/1471-2164-6-94

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182(8):2059–2067

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a Review. Enzyme Res. doi:10.4061/2011/805187

  • Karner MB, DeLong EF, Karl DM (2001) Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507–510

    Article  CAS  Google Scholar 

  • Kasai Y, Kishira H, Harayama S (2002) Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68:5625–5633

    Article  CAS  Google Scholar 

  • Kathiresan K (2003) Polythene and Plastics-degrading microbes from the mangrove soil. Rev Biol Trop 51:629–634

    CAS  Google Scholar 

  • Kivela HM, Madonna S, Krupovic M, Tutino ML, Bamford JKH (2008) Genetics for Pseudoalteromonas provides tools to manipulate marine bacterial virus PM2. J Bacteriol 190:1298–1307

    Article  CAS  Google Scholar 

  • Kumamaru T, Suenaga H, Mitsuoka M, Furukawa K (1998) Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat Biotechnol 16:663–666

    Article  CAS  Google Scholar 

  • Latha K, Lalithakumari D (2001) Transfer and expression of a hydrocarbon degrading plasmid pHCL from Pseudomonas putida to marine bacteria. World J Microbiol Biotechnol 17:523–528

    Article  CAS  Google Scholar 

  • Lauro FM, McDougald D, Thomas T, Williams TJ, Egan S, Rice S, DeMaere MZ, Ting L, Ertan H, Johnson J, Ferriera S, Lapidus A, Anderson I, Kyrpides N, Munk AC, Detter C, Hang CS, Brown MV, Robb FT, Kjelleberga S, Cavicchiol R (2009) The genomic basis of trophic strategy in marine bacteria. PNAS 106:15527–15533

    Article  CAS  Google Scholar 

  • Liao L, Xu XW, Jiang XW, Wang CS, Zhang DS, Yu Ni J, Wu M (2011) Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 78:565–585

    Article  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    CAS  Google Scholar 

  • Loka Bharathi PA, Nair S (2005) Rise of the dormant: simulated disturbance improves culturable abundance, diversity and functions of deep-sea bacteria of Central Indian Ocean Basin. Mar Georesour Geotechnol 23:419–428

    Article  Google Scholar 

  • Lovejoy C, Massana R, Pedros-Alio C (2006) Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl Environ Microbiol 72:3085–3095

    Article  CAS  Google Scholar 

  • MacLeod RA, Onofrey E (1957) Nutrition and metabolism of marine bacteria. III. The relation of sodium and potassium to growth. J Cell Compar Physiol 50:389–401

    Article  CAS  Google Scholar 

  • Maneerat S, Phetrong K (2007) Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J Sci Technol 29:781–791

    Google Scholar 

  • Mangwani N, Dash HR, Chauhan A, Das S (2012) Bacterial quorum sensing: functional features and potential applications in biotechnology. J Mol Microbiol Biotechnol 22:215–227

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  Google Scholar 

  • Martiny AC, Huang Y, Li WZ (2009) Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ Microbiol 11:1340–1347

    Article  CAS  Google Scholar 

  • Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC (1999) The role of inter-molecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16

    Article  CAS  Google Scholar 

  • McKew BA, Coulon F, Osborn AM, Timmis KN, McGenity TJ (2007) Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary. Environ Microbiol 9:165–176

    Article  CAS  Google Scholar 

  • Mukherji S, Jagadevan S, Mohapatra G, Vijay A (2004) Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field. Bioresour Technol 95:281–286

    Article  CAS  Google Scholar 

  • Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, Howard EC, King E, Oakley CA, Reisch CR, Rinta-Kanto JM, Sharma S, Sun S, Varaljay V, Vila-Costa M, Westrich JR, Moran MA (2010) Genome characteristics of a generalist marine bacterial lineage. ISME J 4:784–798

    Article  CAS  Google Scholar 

  • Nwadinigwe AO, Onyeidu EG (2012) Bioremediation of crude oil polluted soil using bacteria and poultry manure monitored through soybean productivity. Pol J Environ Stud 21:171–176

    CAS  Google Scholar 

  • Nweke CO, Okpokwasili GC (2003) Drilling fluid base oil biodegradation potential of a soil Staphylococcus species. African J Biotechnol 2:293–295

    CAS  Google Scholar 

  • Oberbeckmann S, Fuchs BM, Meiners M, Wichels A, Wiltshire KH, Gerdts G (2012) Seasonal dynamics and modeling of a Vibrio community in coastal waters of the North Sea. Microb Ecol 63:543–551

    Article  Google Scholar 

  • Ohtake H, Takahashi K, Tsuzuki Y, Toda K (1985) Uptake and release of phosphate by a pure culture of Acinetobacter calcoaceticus. Water Res 19:1587–1594

    Article  CAS  Google Scholar 

  • Panwichian S, Kantachote D, Wittayaweerasa B, Mallavarapu M (2011) Removal of heavy metals by exopolymeric substances produced by resistant purple non sulphur bacteria isolated from contaminated shrimp ponds. Electron J Biotechnol. 14: ISSN: 0717–3458

    Google Scholar 

  • Pieper DH, Reineke W (2000) Engineering bacteria for bioremediation. Curr Opinion Biotechnol 11:262–270

    Article  CAS  Google Scholar 

  • Piskorska M, Smith G, Weil E (2007) Bacteria associated with the coral Echinopora lamellosa (Esper 1795) in the Indian Ocean—Zanzibar Region. Afr J Environ Sci Technol 1:093–098

    Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802

    Article  CAS  Google Scholar 

  • Prakash D, Raushan RK, Sangodkar UX (2008) Isolation and characterization of meta-toluic acid degrading marine bacterium. Indian J Mar Sci 37:322–325

    CAS  Google Scholar 

  • Pratt D, Happold FC (1960) Requirements for indole production by cells and extracts of a marine bacterium. J Bacteriol 80:232–236

    CAS  Google Scholar 

  • Rainbow PS (1995) Bio monitoring of heavy metal availability in the marine environment. Mar Poll Bull 31:183–192

    Article  CAS  Google Scholar 

  • Ramanathan S, Shi W, Rosen BP, Daunert S (1997) Sensing antimonite and arsenite at the subattomole level with genetically engineered bioluminescent bacteria. Anal Chem 69:3380–3384

    Article  CAS  Google Scholar 

  • Rhodes ME, Payne WJ (1962) Further observations on effects of cations on enzyme induction in marine bacteria. Antonie van Leeuwenhoek. J Microbiol Serol 28:302–314

    CAS  Google Scholar 

  • Robertson DE, Roberts MF, Belay N, Stetter KO, Boone DR (1990) Occurrence of beta-glutamate, a novelosmolyte, in marine methanogenic bacteria. Appl Environ Microbiol 56:1504–1508

    CAS  Google Scholar 

  • Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212

    Article  CAS  Google Scholar 

  • Ruby EW, Jannasch HW (1982) Physiological characteristics of Thiomicrospira sp. strain L-12 isolated from deep-sea hydrothermal vents. J Bacteriol 149:161–165

    CAS  Google Scholar 

  • Safary A, Ardakani MR, Suraki AA, Khiavi MA, Motamedi H (2010) Isolation and characterization of biosurfactant producing bacteria from Caspian Sea. Biotechnol 9:378–382

    Article  Google Scholar 

  • Sakalle K, Rajkumar S (2009) Isolation of crude oil degrading marine bacteria and assessment for biosurfactant production. The Internet J Microbiol 7(2). doi:10.5580/1d0e

  • Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248

    Article  CAS  Google Scholar 

  • Sanchez-Romero JM, Diaz-Orejas R, de Lorenzo V (1998) Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl Environ Microbiol 64:4040–4046

    CAS  Google Scholar 

  • Sekiguchi T, Sato T, Enoki M, Kanehiro H, Uematsu K, Kato C (2010) Isolation and characterization of biodegradable plastic degrading bacteria from deep sea environments. Rep Res De 11:33–41

    Google Scholar 

  • Selvaratnam S, Schoedel BA, McFarland BL, Kulpa CF (1997) Application of the polymerase chain reaction (PCR) and reverse transcriptase/PCR for determining the fate of phenoldegrading Pseudomonas putida ATCC 11172 in a bioaugmented sequencing batch reactor. Appl Microbiol Biotechnol 47:236–240

    Article  CAS  Google Scholar 

  • Sode K, Yamamoto Y, Hatano N (1998) Construction of a marine cyanobacterial strain with increased heavy metal ion tolerance by introducing exogenic metallothionein gene. J Mar Biotechnol 6:174–177

    CAS  Google Scholar 

  • Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Hernd GJ (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Nat Acad Sci 103:12115–12120

    Article  CAS  Google Scholar 

  • Stanley ME (2005) Environmental chemistry. CRC, Boca Raton. ISBN 1-56670-633-5

    Google Scholar 

  • Stevens T, Armitage S, Lu H, Thomas DSG (2007) Examining the potential of high resolution OSL dating of Chinese loess. Quater Geochronol 2:15–22

    Article  Google Scholar 

  • Stramski D, Kiefer DA (1998) Can heterotrophic bacteria be important to marine light absorption? J Planktonic Res 20:1489–1500

    Article  Google Scholar 

  • Sutiknowati LI (2007) Hydrocarbon degrading bacteria: isolation and identification. Makara Sains 11:98–103

    Google Scholar 

  • Suttle CA (2005) Viruses in the sea. Nature 437:356–361

    Article  CAS  Google Scholar 

  • Takeuchi K, Fujioka Y, Kawasaki Y, Shirayama Y (1997) Impacts of high concentrations of CO2 on marine organisms: a modification of CO2 ocean sequestration. Energy Convers Mgmt 38:S337–S341

    Article  CAS  Google Scholar 

  • Teramoto M, Suzuki M, Okazaki F, Hatmanti A, Harayama S (2009) Oceanobacter-related bacteria are important for the degradation of petroleum aliphatic hydrocarbons in the tropical marine environment. Microbiology 155:3362–3370

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency. 2006. "Marine ecosystems" http://www.epa.gov/bioiweb1/aquatic/marine.html.

  • Vijayaraghavan R, Rajendran S (2011) Studies on agar degrading Salegentibacter sp. and characterization of its agarase. Int J Biosci 1:56–64

    CAS  Google Scholar 

  • Winter RB, Yen K, Ensley BD (1989) Efficient degradation of trichloroethylene by a recombinant Escherichia Coli. Biotechnology 7:282–285

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. doi:10.5402/2011/402647

  • Zobell CE, Upham HC (1944) A list of marine bacteria including descriptions of sixty new species. Bull Scripps Inst Oceanog 5:239–292

    Google Scholar 

  • Zobell CE, Morita RY (1957) Barophilic bacteria in some deep sea sediments. J Bacteriol 73:563–568

    CAS  Google Scholar 

  • Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microbial Ecol 12:65–78

    Article  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  CAS  Google Scholar 

  • Jannasch HW, Wirsen CO (1984) Variability of pressure adaptation in deep sea bacteria. Arch Microbiol 139:281–288

    Article  Google Scholar 

  • Chen W, Bruhlmann F, Richins RD, Mulchandani A (1999) Engineering of improved microbes and enzymes for bioremediation. Curr Opin Biotechnol 10:137–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the authorities of NIT, Rourkela for providing facilities. H.R.D., N.M., and J.C. gratefully acknowledge the receipt of research fellowship from the Ministry of Human Resource Development, Government of India. S.K. thanks the Department of Biotechnology, Government of India for a research fellowship. S.D. acknowledges the research grant on utilization of marine bacterial biofilm for enhanced bioremediation from the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, H.R., Mangwani, N., Chakraborty, J. et al. Marine bacteria: potential candidates for enhanced bioremediation. Appl Microbiol Biotechnol 97, 561–571 (2013). https://doi.org/10.1007/s00253-012-4584-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-012-4584-0

Keywords

Navigation