Skip to main content
Log in

Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cultivation in glycerol instead of sugars inhibits 2,3-butanediol (2,3-BD) production by Bacillus amyloliquefaciens. In this study, we report that B. amyloliquefaciens readily produces 2,3-BD from biodiesel-derived glycerol in the presence of beet molasses as a co-substrate. Unexpectedly, the molasses stimulated 2,3-BD production and simultaneously reduced the duration of fermentation. Productivity of 2,3-BD was enhanced at the start of fermentation, and yields increased under continuous molasses supply. Subsequently, 2,3-BD production in molasses-supplemented fed-batch culture was observed. Prior to inoculation of fed-batch fermentation culture, 15 g/l of molasses was added to the bioreactor. After 6 h of incubation, the bioreactor was fed with a solution containing 80 % glycerol and 15 % molasses. The 2,3-BD concentration, yield, and productivity significantly improved, reaching 83.3 g/l, 0.42 g/g, and 0.87 g/l·h, respectively. To our knowledge, these results are the highest report for 2,3-BD fermentation from biodiesel-derived glycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbad-Andaloussi S, Amine J, Gerard P, Petitdemange H (1998) Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431. J Appl Microbiol 84:515–522

    Article  PubMed  CAS  Google Scholar 

  • Adhya S, Echols H (1966) Glucose effect and the galactose enzymes of Escherichia coli: correlation between glucose inhibition of induction and inducer transport. J Bacteriol 92(3):601–608

    PubMed  CAS  Google Scholar 

  • Biebl H, Marten S (1995) Fermentation of glycerol to 1,3-propanediol: use of cosubstrates. Appl Microbiol Biotechnol 44:15–19

    Article  CAS  Google Scholar 

  • Biebl H, Zeng AP, Menzel K, Deckwer WD (1998) Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Appl Microbiol Biotechnol 50(1):24–29

    Article  PubMed  CAS  Google Scholar 

  • Blomqvist K, Nikkola M, Lehtovaara P, Suihko ML, Airaksinen U, Straby KB, Knowles JK, Penttila ME (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175(5):1392–1404

    PubMed  CAS  Google Scholar 

  • Booth I (1985) Regulation of cytoplasmic pH in bacteria. Microbiol Rev 49(4):359–378

    PubMed  CAS  Google Scholar 

  • Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol Adv 27(6):715–725

    Article  PubMed  CAS  Google Scholar 

  • Da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Ad 27(1):30–39

    Article  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–655

    Article  PubMed  CAS  Google Scholar 

  • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29(3):351–364

    Article  PubMed  CAS  Google Scholar 

  • Jiménez AM, Borja R, Martı́n A (2004) A comparative kinetic evaluation of the anaerobic digestion of untreated molasses and molasses previously fermented with Penicillium decumbens in batch reactors. Biochem Eng J 18(2):121–132

    Article  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348

    Article  CAS  Google Scholar 

  • Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Metsoviti M, Paramithiotis S, Drosinos EH, Galiotou-Panayotou M, Nychas G-JE, Zeng A-P, Papanikolaou S (2012a) Screening of bacterial strains capable of converting biodiesel-derived raw glycerol into 1,3-propanediol, 2,3-butanediol, and ethanol. Eng Life Sci 12(1):57–68

    Article  CAS  Google Scholar 

  • Metsoviti M, Paraskevaidi K, Koutinas A, Zeng A-P, Papanikolaou S (2012b) Production of 1,3-propanediol, 2,3-butanediol, and ethanol by a newly isolated Klebsiella oxytoca strain growing on biodiesel-derived glycerol based media. Process Biochem 47(12):1872–1882

    Article  CAS  Google Scholar 

  • Monod J (1942). Recherches sur la croissance des cultures bacteriennes. Paris, Hermann et Cie

  • Monod J (1947) The phenomenon of enzymatic adaptation. Growth 11:223–289

    CAS  Google Scholar 

  • Nakashimada Y, Marwoto B, Kashiwamura T, Kakizono T, Nishio N (2000) Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J Biosci Bioeng 90(6):661–664

    PubMed  CAS  Google Scholar 

  • Papanikolaou S, Fakas S, Fick M, Chevalot I, Galiotou-Panayotou M, Komaitis M, Marc I, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after biodiesel (fatty acid methyl esters) manufacturing process: production of 1,3-propanediol, citric acid, and single cell oil. Biomass Bioenergy 32(1):60–71

    Article  CAS  Google Scholar 

  • Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84(4):659–665

    Article  PubMed  CAS  Google Scholar 

  • Petrov K, Petrova P (2010) Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 87(3):943–949

    Article  PubMed  CAS  Google Scholar 

  • Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P (2001) Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose–glycerol mixtures. J Bacteriol 183(5):1748–1754

    Article  PubMed  CAS  Google Scholar 

  • Sattayasamitsathita S, Prasertsana P, Methacanon P (2011) Statistical optimization for simultaneous production of 1,3-propanediol and 2,3-butanediol using crude glycerol by newly bacterial isolate. Process Biochem 46:608–614

    Article  Google Scholar 

  • Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55(1):10–18

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Tian J, Li J (2007) Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 73(5):1017–1024

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Rao Z, Zhang X, Lin Q, Xia H, Xu Z, Yang S (2011) Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol 51(6):650–658

    Article  PubMed  CAS  Google Scholar 

  • Yang T, Zhang X, Rao Z, Gu S, Xia H, Xu Z (2012) Optimization and scale-up of 2,3-butanediol production by Bacillus amyloliquefaciens B10-127. World J Microbiol Biotechnol 28:1563–1574

    Article  PubMed  CAS  Google Scholar 

  • Zeng A-P, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22(6):749–757

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for New Century Excellent Talents in University (NCET-10-0459), the National Basic Research Program of China (973 program) (2012CB725202), the High-tech Research and Development Programs of China (2011AA02A211, 2012AA022102), the National Natural Science Foundation of China (21276110), the Fundamental Research Funds for the Central Universities (JUSRP51306A, JUSRP1009), the research fund for the Doctoral Program of Higher Education of China (20110093120001), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Ming Rao or Zheng-Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, TW., Rao, ZM., Zhang, X. et al. Fermentation of biodiesel-derived glycerol by Bacillus amyloliquefaciens: effects of co-substrates on 2,3-butanediol production. Appl Microbiol Biotechnol 97, 7651–7658 (2013). https://doi.org/10.1007/s00253-013-5048-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5048-x

Keywords

Navigation