Skip to main content
Log in

2,3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

2,3-Butanediol (2,3-BD) is an organic compound, which is widely used as a fuel and fuel additive and applied in chemical, food, and pharmaceutical industries. Contemporary strategies for its economic synthesis include the development of microbial technologies that use starch as cheap and renewable feedstock. The present work encompasses the metabolic engineering of the excellent 2,3-BD producer Klebsiella pneumoniae G31. In order to perform direct starch conversion into 2,3-BD, the amyL gene encoding quite active, liquefying α-amylase in Bacillus licheniformis was cloned under lac promoter control in the recombinant K. pneumoniae G31-A. The enhanced extracellular over-expression of amyL led to the highest extracellular amylase activity (68 U/ml) ever detected in Klebsiella. The recombinant strain was capable of simultaneous saccharification and fermentation (SSF) of potato starch to 2,3-BD. In SSF batch process by the use of 200 g/l starch, the amount of total diols produced was 60.9 g/l (53.8 g/l 2,3-BD and 7.1 g/l acetoin), corresponding to 0.31 g/g conversion rate. The presented results are the first to show successful starch conversion to 2,3-BD by K. pneumoniae in a one-step process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al Kazaz M, Desseaux V, Marchis-Mouren G, Prodanov E, Santimone M (1998) The mechanism of porcine pancreatic α-amylase. Inhibition of maltopentaose hydrolysis by acarbose, maltose and maltotriose. Eur J Biochem 252:100–107

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cao N, Xia Y, Gong CS, Tsao GT (1997) Production of 2,3-butanediol from pretreated corn cob by Klebsiella pneumoniae in the presence of fungal cellulase. Appl Biochem Biotechnol 63:129–139

    Article  PubMed  Google Scholar 

  • Cheng KK, Liu Q, Zhang JA, Li JP, Xu JM, Wang GH (2010) Improved 2,3-butanediol production from corncob acid hydrolysate by fed-batch fermentation using Klebsiella oxytoca. Proc Biochem 45:613–616

    Article  CAS  Google Scholar 

  • Deutch CE (2002) Characterization of a salt-tolerant extracellular α-amylase from Bacillus dipsosauri. Lett Appl Microbiol 35:78–84

    Article  CAS  PubMed  Google Scholar 

  • Garg SK, Jain A (1995) Fermentative production of 2,3-butanediol: a review. Bioresour Technol 51:103–109

    Article  CAS  Google Scholar 

  • Gawande BN, Patkar AY (2001) Purification and properties of a novel raw starch degrading-cyclodextrin glycosyltransferase from Klebsiella pneumoniae AS-22. Enzym Microb Technol 22:735–743

    Article  Google Scholar 

  • Hagihara H, Igarashi K, Hayashi Y, Endo K, Ikawa-Kitayama K, Ozaki K, Kawai S, Ito S (2001) Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl Environ Microbiol 67:1744–1750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hmidet N, Bayoudh A, Berrin JG, Kanoun S, Juge N, Nasri M (2008) Purification and biochemical characterization of a novel α-amylase from Bacillus licheniformis NH1. Cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. Proc Biochem 43:499–510

    Article  CAS  Google Scholar 

  • Ismail NF, Hamdan S, Mahadi NM, Murad AMA, Rabu A, Bakar FDA, Klappa P, Illias R (2011) A mutant l-asparaginase II signal peptide improves the secretion of recombinant cyclodextrin glucanotransferase and the viability of Escherichia coli. Biotechnol Lett 33:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state of-the-art review. Biotechnol Adv 29:351–364

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Xia ZF, Fu NH, Nie ZK, Shen MQ, Tian QQ, Huang H (2013) Cofactor engineering through heterologous expression of an NADH oxidase and its impact on metabolic flux redistribution in Klebsiella pneumoniae. Biotechnol Biofuels 6:7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jurchescu IM, Hamann J, Xiye Zhou X, Ortmann T, Kuenz A, Ulf Prüße U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97:6715–6723

    Article  CAS  PubMed  Google Scholar 

  • Kim DK, Rathnasingh C, Song H, Lee HJ, Seung D, Chang YK (2013) Metabolic engineering of a novel Klebsiella oxytoca strain for enhanced 2,3-butanediol production. J Biosci Bioeng 116:186–192

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sankaranarayanan M, Jae K, Durgapal M, Ashok S, Ko Y, Sarkar R, Park S (2012) Co-production of 3-hydroxypropionic acid and 1,3-propanediol from glycerol using resting cells of recombinant Klebsiella pneumoniae J2B strain overexpressing aldehyde dehydrogenase. Appl Microbiol Biotechnol 96:373–383

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Gu Z, Wang M, Du G, Wu J (2009) Delayed supplementation of glycine enhances extracellular secretion of the recombinant α-cyclodextrin glycosyltransferase in Escherichia coli. Appl Microbiol Biotechnol 85:553–561

    Article  PubMed  Google Scholar 

  • Li D, Dai JY, Xiu ZL (2010) A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumoniae. Bioresour Technol 101:8342–8347

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Wang A, Qin J, Li L, Ai X, Jiang T, Tang H, Xu P (2009) Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl Microbiol Biotechnol 82:49–57

    Article  CAS  PubMed  Google Scholar 

  • Momma M (2000) Cloning and sequencing of maltohexaose-producing amylase gene of Klebsiella pneumoniae. Biosci Biotechnol Biochem 64:428–431

    Article  CAS  PubMed  Google Scholar 

  • Nakamura LK (1981) Lactobacillus amylovorus, a new starch-hydrolyzing species from cattle waste-corn fermentations. Int J Syst Bacteriol 31:56–63

    Article  CAS  Google Scholar 

  • Pantschev C, Klenz G, Hafner B (1981) Vergleichende charakterisierung von α-amylasepraparaten. Lebensmittelindustrie 28:71–74

    CAS  Google Scholar 

  • Perego P, Converti A, Del Borghi M (2003) Effects of temperature, inoculum size and starch hydrolysate concentration on butanediol production by Bacillus licheniformis. Bioresour Technol 89:125–131

    Article  CAS  PubMed  Google Scholar 

  • Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol 84:659–665

    Article  CAS  PubMed  Google Scholar 

  • Petrov K, Petrova P (2010) Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Appl Microbiol Biotechnol 87:943–949

    Article  CAS  PubMed  Google Scholar 

  • Petrova P, Petrov K, Beschkov V (2009) Production of 1,3-propanediol from glycerol by newly isolated strains of Klebsiella pneumoniae. C R Acad Bulg Sci 62:233–242

    CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sun LH, Wang XD, Dai JY, Xiu ZL (2009) Microbial production of 2,3-butanediol from Jerusalem artichoke tubers by Klebsiella pneumoniae. Appl Microbiol Biotechnol 82:847–852

    Article  CAS  PubMed  Google Scholar 

  • Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18

    Article  CAS  PubMed  Google Scholar 

  • Tonkova A (1991) Effect of glucose and citrate on a-amylase production in Bacillus licheniformis. J Basic Microbiol 31:217–222

    Google Scholar 

  • Wang AL, Wang Y, Jiang TY, Li LX, Ma CQ, Xu P (2010) Production of 2,3-butanediol from corncob molasses, a waste by-product in xylitol production. Appl Microbiol Biotechnol 87:965–970

    Article  CAS  PubMed  Google Scholar 

  • Wong CL, Huang CC, Lu WB, Chen WM, Chang JS (2012) Producing 2,3-butanediol from agricultural waste using an indigenous Klebsiella sp. Zmd30 strain. Biochem Eng J 69:32–40

    Article  CAS  Google Scholar 

  • Xiu ZL, Zeng AP (2008) Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol 78:917–926

    Article  CAS  PubMed  Google Scholar 

  • Zeng AP, Sabra W (2011) Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 22:749–757

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Zhang H, Zhao L, Wei L, Ma X, Wei D (2008) One-step production of 2,3-butanediol from starch by secretory over-expression of amylase in Klebsiella pneumoniae. J Chem Technol Biotechnol 83:1409–1412

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaloyan Petrov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsvetanova, F., Petrova, P. & Petrov, K. 2,3-Butanediol production from starch by engineered Klebsiella pneumoniae G31-A. Appl Microbiol Biotechnol 98, 2441–2451 (2014). https://doi.org/10.1007/s00253-013-5418-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-5418-4

Keywords

Navigation