Skip to main content

Advertisement

Log in

Development of an oral mucosa model to study host-microbiome interactions during wound healing

  • Methods and protocols
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Crosstalk between the human host and its microbiota is reported to influence various diseases such as mucositis. Fundamental research in this area is however complicated by the time frame restrictions during which host-microbe interactions can be studied in vitro. The model proposed in this paper, consisting of an oral epithelium and biofilm, can be used to study microbe-host crosstalk in vitro in non-infectious conditions up to 72 h. Microbiota derived from oral swabs were cultured on an agar/mucin layer and challenged with monolayers of keratinocytes grown on plastic or collagen type I layers embedded with fibroblasts. The overall microbial biofilm composition in terms of diversity remained representative for the oral microbiome, whilst the epithelial cell morphology and viability were unaffected. Applying the model to investigate wound healing revealed a reduced healing of 30 % in the presence of microbiota, which was not caused by a reduction of the proliferation index (52.1–61.5) or a significantly increased number of apoptotic (1–1.13) or necrotic (32–30.5 %) cells. Since the model allows the separate study of the microbial and cellular exometabolome, the biofilm and epithelial characteristics after co-culturing, it is applicable for investigations within fundamental research and for the discovery and development of agents that promote wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    Article  PubMed Central  PubMed  Google Scholar 

  • Aas JA, Griffen AL, Dardis SR, Lee AM, Olsen I, Dewhirst FE, Leys EJ, Paster BJ (2008) Bacteria of dental caries in primary and permanent teeth in children and young adults. J Clin Microbiol 46:1407–1417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alander M, De Smet I, Nollet L, Verstraete W, Von Wright A, Mattila-Sandholm T (1999) The effect of probiotic strains on the microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Int J Food Microbiol 46:71–79

    Article  CAS  PubMed  Google Scholar 

  • Bakke I, De Schryver P, Boon N, Vadstein O (2011) PCR-based community structure studies of bacteria associated with eukaryotic organisms: a simple PCR strategy to avoid co-amplification of eukaryotic DNA. J Microbiol Methods 84:349–351

    Article  CAS  PubMed  Google Scholar 

  • Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, Nelson KE, Gill SR, Fraser-Liggett CM, Relman DA (2010) Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4:962–974

    Article  PubMed Central  PubMed  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  PubMed  Google Scholar 

  • Bucknall TE (1980) The effect of local infection upon wound healing: an experimental study. Br J Surg 67:851–855

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Yu W-H, Izard J, Baranova O V, Lakshmanan A and Dewhirst FE (2010). The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database baq013

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  CAS  PubMed  Google Scholar 

  • De Boever P, Deplancke B, Verstraete W (2000) Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J Nutr 130:2599–2606

    PubMed  Google Scholar 

  • Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu W-H, Lakshmanan A, Wade WG (2010) The human oral microbiome. J Bacteriol 192:5002–5017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dongari-Bagtzoglou A, Kashleva H (2006) Development of a novel three-dimensional in vitro model of oral Candida infection. Microb Pathog 40:271–278

    Article  CAS  PubMed  Google Scholar 

  • Dürr M, Peschel A (2002) Chemokines Meet Defensins: the Merging Concepts of Chemoattractants and Antimicrobial Peptides in Host Defense. Infect Immun 70:6515–6517

  • Edwards R, Harding KG (2004) Bacteria and wound healing. Curr Opin Infect Dis 17:91–96

    Article  PubMed  Google Scholar 

  • Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

  • Grootaert C, Boon N, Zeka F, Vanhoecke B, Bracke M, Verstraete W, Van de Wiele T (2011) Adherence and viability of intestinal bacteria to differentiated Caco-2 cells quantified by flow cytometry. J Microbiol Methods 86:33–41

    Article  PubMed  Google Scholar 

  • Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobsen J, van Deurs B, Pedersen M, Rassing MR (1995) TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability. Int J Pharm 125:165–184

    Article  CAS  Google Scholar 

  • Jeng JH, Chan CP, Ho YS, Lan WH, Hsieh CC, Chang MC (1999) Effects of butyrate and propionate on the adhesion, growth, cell cycle kinetics, and protein synthesis of cultured human gingival fibroblasts. J Periodontol 70:1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Darzi Y, Tawaratsumida K, Marchesan JT, Hasegawa M, Moon H, Chen GY, Nùñez G, Giannobile WV, Raes J, Inohara N (2013) Induction of Bone Loss by Pathobiont-Mediated Nod1 Signaling in the Oral Cavity. Cell Host Microbe 13:595–601

  • Küchler S, Wolf NB, Heilmann S, Weindl G, Helfmann J, Yahya MM, Stein C, Schäfer-Korting M (2010) 3D-wound healing model: influence of morphine and solid lipid nanoparticles. J Biotechnol 148:24–30

    Article  PubMed  Google Scholar 

  • Letzelter C, Croute F, Pianezzi B, Roques C, Soleilhavoup JP (1998) Supernatant cytotoxicity and proteolytic activity of selected oral bacteria against human gingival fibroblasts in vitro. Arch Oral Biol 43:15–23

    Article  CAS  PubMed  Google Scholar 

  • Li X, Kolltveit KM, Tronstad L, Olsen I (2000) Systemic diseases caused by oral infection. Clin Microbiol Rev 13:547–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Löe H (1981) The role of bacteria in periodontal diseases. Bull World Heal Organ 59:821–825

    Google Scholar 

  • MacNeil S, Shepherd J, Smith L (2011) Production of tissue-engineered skin and oral mucosa for clinical and experimental use. Methods Mol Biol 695:129–153

    Article  CAS  PubMed  Google Scholar 

  • Marzorati M, Van den Abbeele P, Grootaert C, De Weirdt R, Marcos CA, Vermeiren J, Van de Wiele T (2014) Chapter 7: Models of the human microbiota and microbiome in vitro. In: Marchesi JR (ed) The Human Microbiota and Microbiome. CABI Publishing

  • Mempel M, Schnopp C, Hojka M, Fesq H, Weidinger S, Schaller M, Korting H, Ring J, Abeck D (2002) Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysin-independent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. Br J Dermatol 146:943–951

    Article  CAS  PubMed  Google Scholar 

  • Mitchell HL, Dashper SG, Catmull DV, Paolini RA, Cleal SM, Slakeski N, Tan KH, Reynolds EC (2010) Treponema denticola biofilm-induced expression of a bacteriophage, toxin-antitoxin systems and transposases. Microbiology 156:774–788

    Article  CAS  PubMed  Google Scholar 

  • Moharamzadeh K, Brook IM, Van Noort R, Scutt AM, Thornhill MH (2007) Tissue-engineered oral mucosa: a review of the scientific literature. J Dent Res 86:115–124

    Article  CAS  PubMed  Google Scholar 

  • Moharamzadeh K, Brook IM, Scutt AM, Thornhill MH, Van Noort R (2008a) Mucotoxicity of dental composite resins on a tissue-engineered human oral mucosal model. J Dent 36:331–336

    Article  CAS  PubMed  Google Scholar 

  • Moharamzadeh K, Brook IM, Van Noort R, Scutt AM, Smith KG, Thornhill MH (2008b) Development, optimization and characterization of a full-thickness tissue engineered human oral mucosal model for biological assessment of dental biomaterials. J Mater Sci Mater Med 19:1793–1801

    Article  CAS  PubMed  Google Scholar 

  • Moharamzadeh K, Colley H, Murdoch C, Hearnden V, Chai WL, Brook IM, Thornhill MH, Macneil S (2012) Tissue-engineered oral mucosa. J Dent Res 91:642–650

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Paju S, Scannapieco FA (2007) Oral biofilms, periodontitis, and pulmonary infections. Oral Dis 13:508–512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344

    Article  CAS  PubMed  Google Scholar 

  • Scannapieco FA (1999) Role of oral bacteria in respiratory infection. J Periodontol 70:793–802

    Article  CAS  PubMed  Google Scholar 

  • Scheppach W (1994) Effects of short chain fatty acids on gut morphology and function. Gut 35:S35–S38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segata N, Haake SK, Mannon P, Lemon KP, Waldron L, Gevers D, Huttenhower C, Izard J (2012) Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13:R42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shepherd J, Douglas I, Rimmer S, Swanson L, MacNeil S (2009) Development of three-dimensional tissue-engineered models of bacterial infected human skin wounds. Tissue Eng Part C Methods 15:475–484

    Article  PubMed  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Thomson PJ, Potten CS, Appleton DR (1999) Mapping dynamic epithelial cell proliferative activity within the oral cavity of man: a new insight into carcinogenesis? Br J Oral Maxillofac Surg 37:377–383

    Article  CAS  PubMed  Google Scholar 

  • Van den Abbeele P, Grootaert C, Possemiers S, Verstraete W, Verbeken K, Van de Wiele T (2009) In vitro model to study the modulation of the mucin-adhered bacterial community. Appl Microbiol Biotechnol 83:349–359

    Article  PubMed  Google Scholar 

  • Van Loosdrecht MC, Lyklema J, Norde W, Zehnder AJ (1990) Influence of interfaces on microbial activity. Microbiol Rev 54:75–87

    PubMed Central  PubMed  Google Scholar 

  • Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  • Werner S, Krieg T, Smola H (2007) Keratinocyte-fibroblast interactions in wound healing. J Invest Dermatol 127:998–1008

    Article  CAS  PubMed  Google Scholar 

  • Wiegand C, Abel M, Ruth P, Hipler U-C (2009) HaCaT keratinocytes in co-culture with Staphylococcus aureus can be protected from bacterial damage by polihexanide. Wound Repair Regen 17:730–738

    Article  PubMed  Google Scholar 

  • Wilson A, Gibson P (1997) Short-chain fatty acids promote the migration of colonic epithelial cells in vitro. Gastroenterology 113:487–496

    Article  CAS  PubMed  Google Scholar 

  • Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J, Oppenheim JJ (2003) Many chemokines including CCL20/ MIP-3a display antimicrobial activity. J Leukoc Biol 74:448–455

Download references

Acknowledgments

Tine De Ryck is a doctoral research fellow supported by the FWO—Flanders (G.0712.10 N). Tom Van de Wiele is financially supported by FWO (1526012 N) and GOA (BOF12/GOA/008). Barbara Vanhoecke’s research leading to these results has received funding from GOA (BOF 01G01307) and the Seventh Framework Programme (FP7/2011) under grant agreement no. 299169.

Conflict of interest

There are no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tine De Ryck or Tom Van de Wiele.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 7.11 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Ryck, T., Grootaert, C., Jaspaert, L. et al. Development of an oral mucosa model to study host-microbiome interactions during wound healing. Appl Microbiol Biotechnol 98, 6831–6846 (2014). https://doi.org/10.1007/s00253-014-5841-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5841-1

Keywords

Navigation