Skip to main content

Advertisement

Log in

Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Eighteen microalgae, including two local isolates, were evaluated for their ability to grow and remove nutrients from unsterilized primary or secondary wastewater effluents as well as wastewater supplemented with nutrient-rich anaerobic digester centrate (ADC). Most of the tested species except several phylogenetically clustered Chlorella sorokiniana including local isolates and Scenedesmus strains were unable to grow efficiently. This may reflect the presence of certain genetic traits important for robust growth in the unsterilized wastewater. The maximum algal-specific growth rates and biomass density obtained in these bacterial-contaminated cultures were in the range of 0.8–1 day−1 and 250–350 mg L−1, respectively. ADC supplementation was especially helpful to biologically treated secondary effluent with its lower initial macronutrient and micronutrient content. As a result of algal growth, total nitrogen and orthophosphate levels were reduced by as much as 90 and 70 %, respectively. Biological assimilation was estimated to be the main mechanism of nitrogen removal in primary and secondary effluents with ammonia volatilization and bacterial nitrification-denitrification contributing for cultures supplemented with ADC. Assimilation by algae served as the principal mechanism of orthophosphate remediation in secondary wastewater cultures, while chemical precipitation appeared also to be important for orthophosphate removal in primary wastewater. Overall, cultivation of microalgae in primary and primary + 5 % ADC may be more favorable from an economical and sustainability perspective due to elimination of the costly and energy-intensive biological treatment step. These findings demonstrate that unsterilized wastewater and ADC can serve as critical nutrient sources for biomass generation and that robust microalgae can be potent players in wastewater phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelaziz AEM, Leite GB, Belhaj MA, Hallenbeck PC (2014) Screening microalgae native to Quebec for wastewater treatment and biodiesel production. Bioresource Technol 157:140–148. doi:10.1016/j.biortech.2014.01.114

    CAS  Google Scholar 

  • Abeliovich A, Azov Y (1976) Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microb 31(6):801–806

    CAS  Google Scholar 

  • Abou-Shanab RAI, Ji M-K, Kim H-C, Paeng K-J, Jeon B-H (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manage 115:257–264. doi:10.1016/j.jenvman.2012.11.022

    CAS  PubMed  Google Scholar 

  • Adlercreutz P, Holst O, Mattiasson B (1982) Oxygen supply to immobilized cells: 2. Studies on a coimmobilized algae-bacteria preparation with in situ oxygen generation. Enzyme Microb Tech 4(6):395–400. doi:10.1016/0141-0229(82)90069-2

    CAS  Google Scholar 

  • Ahn Y-H (2006) Sustainable nitrogen elimination biotechnologies: a review. Process Biochem 41(8):1709–1721. doi:10.1016/j.procbio.2006.03.033

    CAS  Google Scholar 

  • Amin SA, Green DH, Hart MC, Kupper FC, Sunda WG, Carrano CJ (2009) Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci U S A 106(40):17071–17076. doi:10.1073/pnas.0905512106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aravantinou AF, Theodorakopoulos MA, Manariotis ID (2013) Selection of microalgae for wastewater treatment and potential lipids production. Bioresource Technol 147:130–134. doi:10.1016/j.biortech.2013.08.024

  • Bjornsson WJ, Nicol RW, Dickinson KE, McGinn PJ (2013) Anaerobic digestates are useful nutrient sources for microalgae cultivation: functional coupling of energy and biomass production. J Appl Phycol 25(5):1523–1528. doi:10.1007/s10811-012-9968-0

    CAS  Google Scholar 

  • Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced Biofuels and Bioproducts. Springer, New York, pp 873–975

    Google Scholar 

  • Bohutskyi P, Betenbaugh MJ, Bouwer EJ (2014a) The effects of alternative pretreatment strategies on anaerobic digestion and methane production from different algal strains. Bioresource Technol 155:366–372. doi:10.1016/j.biortech.2013.12.095

    CAS  Google Scholar 

  • Bohutskyi P, Kula T, Kessler B, Hong Y, Bouwer E, Betenbaugh M, Allnutt FCT (2014b) Mixed trophic state production process for microalgal biomass with high lipid content for generating biodiesel and biogas. BioEner Res 7(4):1174–1185. doi:10.1007/s12155-014-9453-5

    CAS  Google Scholar 

  • Bohutskyi P, Liu K, Kessler B, Kula T, Hong Y, Bouwer E, Betenbaugh M, Allnutt FCT (2014c) Mineral and non-carbon nutrient utilization and recovery during sequential phototrophic-heterotrophic growth of lipid-rich algae. Appl Microbiol Biotechnol 98(11):5261–5273. doi:10.1007/s00253-014-5655-1

    CAS  PubMed  Google Scholar 

  • Bohutskyi P, Ketter B, Chow S, Adams KJ, Betenbaugh MJ, Allnutt FCT, Bouwer EJ (2015) Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresource Technol 183:229–239. doi:10.1016/j.biortech.2015.02.012

    CAS  Google Scholar 

  • Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8(1):21–32. doi:10.1016/j.hal.2008.08.028

    CAS  Google Scholar 

  • Burczyk J, Śmietana B, Termińska-Pabis K, Zych M, Kowalowski P (1999) Comparison of nitrogen content amino acid composition and glucosamine content of cell walls of various chlorococcalean algae. Phytochemistry 51(4):491–497. doi:10.1016/s0031-9422(99)00063-1

    CAS  Google Scholar 

  • Castro YA, Ellis JT, Miller CD, Sims RC (2015) Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy 140:14–19. doi:10.1016/j.apenergy.2014.11.045

    CAS  Google Scholar 

  • Cheirsilp B, Suwannarat W, Niyomdecha R (2011) Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. New Biotechnol 28(4):362–368. doi:10.1016/j.nbt.2011.01.004

    CAS  Google Scholar 

  • Chen W-T, Zhang Y, Zhang J, Yu G, Schideman LC, Zhang P, Minarick M (2014) Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Bioresource Technol 152:130–139. doi:10.1016/j.biortech.2013.10.111

    CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresource Technol 101(9):3097–3105. doi:10.1016/j.biortech.2009.12.026

    CAS  Google Scholar 

  • Cho S, Luong TT, Lee D, Oh Y-K, Lee T (2011) Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresource Technol 102(18):8639–8645. doi:10.1016/j.biortech.2011.03.037

    CAS  Google Scholar 

  • Collos Y, Harrison PJ (2014) Acclimation and toxicity of high ammonium concentrations to unicellular algae. Mar Pollut Bull 80(1–2):8–23. doi:10.1016/j.marpolbul.2014.01.006

    CAS  PubMed  Google Scholar 

  • Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63(4):660. doi:10.2166/wst.2011.100

    CAS  PubMed  Google Scholar 

  • Croft MT, Warren MJ, Smith AG (2006) Algae need their vitamins. Eukaryot Cell 5(8):1175–1183. doi:10.1128/ec.00097-06

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cuaresma Franco M, Buffing MF, Janssen M, Vílchez Lobato C, Wijffels RH (2011) Performance of Chlorella sorokiniana under simulated extreme winter conditions. J Appl Phycol 24(4):693–699. doi:10.1007/s10811-011-9687-y

    PubMed Central  PubMed  Google Scholar 

  • Day JG, Thomas NJ, Achilles-Day UEM, Leakey RJG (2012) Early detection of protozoan grazers in algal biofuel cultures. Bioresource Technol 114:715–719. doi:10.1016/j.biortech.2012.03.015

    CAS  Google Scholar 

  • de Bashan LE, Hernandez J-P, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38(2):466–474. doi:10.1016/j.watres.2003.09.022

    PubMed  Google Scholar 

  • de Bashan LE, Trejo A, Huss VAR, Hernandez J-P, Bashan Y (2008) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technol 99(11):4980–4989. doi:10.1016/j.biortech.2007.09.065

    Google Scholar 

  • Dickinson KE, Whitney CG, McGinn PJ (2013) Nutrient remediation rates in municipal wastewater and their effect on biochemical composition of the microalga Scenedesmus sp. AMDD Algal Res 2(2):127–134. doi:10.1016/j.algal.2013.01.009

    Google Scholar 

  • Eaton AD, Franson MAH (2005) Standard Methods for the Examination of Water & Wastewater, 21st edn. APHA, AWWA, and the WEF, New York

    Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresource Technol 111:491–495. doi:10.1016/j.biortech.2012.02.002

    CAS  Google Scholar 

  • Evens T, Paul C, Pohnert G (2011) Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis. PLoS One 6(6):e21032. doi:10.1371/journal.pone.0021032

    Google Scholar 

  • Fucikova K, Lewis LA (2012) Intersection of Chlorella, Muriella and Bracteacoccus: resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea 12(1):83–93

    Google Scholar 

  • Gantar M, Obreht Z, Dalmacija B (1991) Nutrient removal and algal succession during the growth of Spirulina platensis and Scenedesmus quadricauda on swine wastewater. Bioresource Technol 36(2):167–171. doi:10.1016/0960-8524(91)90175-j

    CAS  Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12(3/5):331–339. doi:10.1023/a:1008146421368

    CAS  Google Scholar 

  • Green FB, Bernstone LS, Lundquist TJ, Oswald WJ (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33(7):207–217

    CAS  Google Scholar 

  • Gutman J, Zarka A, Boussiba S (2009) The host-range of Paraphysoderma sedebokerensis, a chytrid that infects Haematococcus pluvialis. Eur J Phycol 44(4):509–514. doi:10.1080/09670260903161024

    CAS  Google Scholar 

  • Hodaifa G, Martínez ME, Sánchez S (2009) Daily doses of light in relation to the growth of Scenedesmus obliquus in diluted three-phase olive mill wastewater. J Chem Technol Biotechnol 84(10):1550–1558. doi:10.1002/jctb.2219

    CAS  Google Scholar 

  • Hu B, Min M, Zhou W, Du Z, Mohr M, Chen P, Zhu J, Cheng Y, Liu Y, Ruan R (2012) Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresource Technol 126:71–79. doi:10.1016/j.biortech.2012.09.031

    CAS  Google Scholar 

  • Jiang X, Ren C, Hu C, Zhao Z (2013) Isolation and algicidal characterization of Bowmanella denitrificans S088 against Chlorella vulgaris. World J Microbiol Biotechnol 30(2):621–629. doi:10.1007/s11274-013-1478-y

    PubMed  Google Scholar 

  • Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14(6):1466–1476. doi:10.1111/j.1462-2920.2012.02733.x

    CAS  PubMed  Google Scholar 

  • Kim S, Lee Y, Hwang S-J (2013a) Removal of nitrogen and phosphorus by Chlorella sorokiniana cultured heterotrophically in ammonia and nitrate. Int Biodeter Biodegr 85:511–516. doi:10.1016/j.ibiod.2013.05.025

    CAS  Google Scholar 

  • Kim S, J-e P, Cho Y-B, Hwang S-J (2013b) Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Bioresource Technol 144:8–13. doi:10.1016/j.biortech.2013.06.068

    CAS  Google Scholar 

  • Kivaisi AK (2001) The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol Eng 16(4):545–560

    Google Scholar 

  • Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresource Technol 150:377–386. doi:10.1016/j.biortech.2013.10.032

    CAS  Google Scholar 

  • Krienitz L, Hegewald EH, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43(5):529–542. doi:10.2216/i0031-8884-43-5-529.1

    Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. doi:10.1021/es900705j

    CAS  PubMed  Google Scholar 

  • Larsdotter K, Jansen JC, Dalhammar G (2007) Biologically mediated phosphorus precipitation in wastewater treatment with microalgae. Environ Technol 28(9):953–960. doi:10.1080/09593332808618855

    CAS  PubMed  Google Scholar 

  • Lawrence JE (2008) Furtive foes: algal viruses as potential invaders. ICES J Mar Sci 65(5):716–722. doi:10.1093/icesjms/fsn024

    Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan RR (2011) Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresource Technol 102(23):10861–10867. doi:10.1016/j.biortech.2011.09.064

    CAS  Google Scholar 

  • Lukavsky J (1970) Phlyctidium scenedesmi, a chytrid destroying an outdoor mass culture of Scenedesmus obliqus. Nova Hedwigia 19:775–777

    Google Scholar 

  • Mara DD, Mills SW, Pearson HW, Alabaster GP (1992) Waste stabilization ponds: a viable alternative for small community treatment systems. Water Environ J 6(3):72–78. doi:10.1111/j.1747-6593.1992.tb00740.x

    CAS  Google Scholar 

  • Matsuo Y (2005) Isolation of an algal morphogenesis inducer from a marine bacterium. Science 307(5715):1598–1598. doi:10.1126/science.1105486

    CAS  PubMed  Google Scholar 

  • Maynard HE, Ouki SK, Williams SC (1999) Tertiary lagoons: a review of removal mechanisms and performance. Water Res 33(1):1–13. doi:10.1016/s0043-1354(98)00198-5

    CAS  Google Scholar 

  • McGinn PJ, Dickinson KE, Park KC, Whitney CG, MacQuarrie SP, Black FJ, Frigon J-C, Guiot SR, O’Leary SJB (2012) Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res 1(2):155–165. doi:10.1016/j.algal.2012.05.001

    Google Scholar 

  • Moraine R, Shelef G, Meydan A, Levi A (1979) Algal single cell protein from wastewater treatment and renovation process. Biotechnol Bioeng 21(7):1191–1207. doi:10.1002/bit.260210709

    CAS  Google Scholar 

  • Moree AL, Beusen AHW, Bouwman AF, Willems WJ (2013) Exploring global nitrogen and phosphorus flows in urban wastes during the twentieth century. Global Biogeochem Cy 27(3):836–846. doi:10.1002/gbc.20072

    CAS  Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2000) High photosynthetic productivity of green microalga Chlorella sorokiniana. Appl Biochem Biotech 87(3):203–218

    CAS  Google Scholar 

  • Morse G, Brett S, Guy J, Lester J (1998) Review: phosphorus removal and recovery technologies. Sci Total Environ 212(1):69–81. doi:10.1016/s0048-9697(97)00332-x

    CAS  Google Scholar 

  • Mouget J-L, Dakhama A, Lavoie MC, Noüe J (2006) Algal growth enhancement by bacteria: Is consumption of photosynthetic oxygen involved? FEMS Microbiol Ecol 18(1):35–43. doi:10.1111/j.1574-6941.1995.tb00159.x

    Google Scholar 

  • Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45(13):5861–5868. doi:10.1021/es200109z

    CAS  PubMed  Google Scholar 

  • Nurdogan Y, Oswald W (1995) Enhanced nutrient removal in high-rate ponds. Water Sci Technol 31(12):33–43. doi:10.1016/0273-1223(95)00490-e

    CAS  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12(3/5):277–284. doi:10.1023/a:1008188311681

    CAS  Google Scholar 

  • Olsen LM, Öztürk M, Sakshaug E, Johnsen G (2006) Photosynthesis-induced phosphate precipitation in seawater: ecological implications for phytoplankton. Mar Ecol Prog Ser 319:103–110. doi:10.3354/meps319103

    CAS  Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15(2):99–106. doi:10.1023/a:1023871903434

    CAS  Google Scholar 

  • Park J, Jin H-F, Lim B-R, Park K-Y, Lee K (2010) Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresource Technol 101(22):8649–8657. doi:10.1016/j.biortech.2010.06.142

    CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011a) Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technol 102(1):35–42. doi:10.1016/j.biortech.2010.06.158

    CAS  Google Scholar 

  • Park KC, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou J, Wilson KE, O’Leary SJB, McGinn PJ (2011b) Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol 24(3):339–348. doi:10.1007/s10811-011-9772-2

    Google Scholar 

  • Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energ 88(10):3377–3388. doi:10.1016/j.apenergy.2011.04.023

    CAS  Google Scholar 

  • Paul C, Mausz MA, Pohnert G (2012) A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 9(2):349–359. doi:10.1007/s11306-012-0453-1

    Google Scholar 

  • Picot B, El Halouani H, Casellas C, Moersidik S, Bontoux J (1991) Nutrient removal by high rate pond system in a Mediterranean climate (France). Water Sci Technol 23(7–9):1535–1541

    CAS  Google Scholar 

  • Przytocka-Jusiak M, Mlynarczyk A, Kulesza M, Mycielski R (1977) Properties of Chlorella vulgaris strain adapted to high concentration of ammonium nitrogen. Acta Microbiol Pol 26(2):185–197

    CAS  PubMed  Google Scholar 

  • Rahman A, Anthony RJ, Sathish A, Sims RC, Miller CD (2014) Effects of wastewater microalgae harvesting methods on polyhydroxybutyrate production. Bioresource Technol 156:364–367. doi:10.1016/j.biortech.2014.01.034

    CAS  Google Scholar 

  • Rahman A, Putman RJ, Inan K, Sal FA, Sathish A, Smith T, Nielsen C, Sims RC, Miller CD (2015) Polyhydroxybutyrate production using a wastewater microalgae based media. Algal Res 8:95–98. doi:10.1016/j.algal.2015.01.009

    Google Scholar 

  • Reynolds CS (2006) Nutrient uptake and assimilation in phytoplankton Ecol Phytoplankton. Cambridge University Press, Cambridge, pp 145–177

    Google Scholar 

  • Rhee G-Y (1978) Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol Oceanogr 23(1):10–25

    CAS  Google Scholar 

  • Roberts GW, Fortier M-OP, Sturm BSM, Stagg-Williams SM (2013) Promising pathway for algal biofuels through wastewater cultivation and hydrothermal conversion. Energ Fuel 27(2):857–867. doi:10.1021/ef3020603

    CAS  Google Scholar 

  • Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA (2014) Comparative analyses of three chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 9(4):e92460. doi:10.1371/journal.pone.0092460

    PubMed Central  PubMed  Google Scholar 

  • Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15(7):704–714. doi:10.1007/s11367-010-0194-1

    CAS  Google Scholar 

  • Shelef G (1982) High-rate algae ponds for wastewater treatment and protein production. Water Sci Technol 14(1–2):439–452

    CAS  Google Scholar 

  • Shu C-H, Tsai C-C, Chen K-Y, Liao W-H, Huang H-C (2013) Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. J Taiwan Inst Chem Eng 44(6):936–942. doi:10.1016/j.jtice.2013.04.001

    CAS  Google Scholar 

  • St John RT, Hollocher TC (1977) Nitrogen 15 tracer studies on the pathway of denitrification in Pseudomonas aeruginosa. J Biol Chem 252(1):212–218

    CAS  PubMed  Google Scholar 

  • Takeda H (1993) Chemical composition of cell walls as a taxonomical marker. J Plant Res 106(3):195–200. doi:10.1007/bf02344585

    CAS  Google Scholar 

  • Tam NFY, Wong YS (1996) Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technol 57(1):45–50. doi:10.1016/0960-8524(96)00045-4

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30(12):2725–2729. doi:10.1093/molbev/mst197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thimijan RW, Heins RD (1983) Photometric, radiometric, and quantum light units of measure: a review of procedures for interconversion. HortSci 18(6):818–822

    Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325(5938):270–271. doi:10.1126/science.1177970

    CAS  PubMed  Google Scholar 

  • Tuantet K, Janssen M, Temmink H, Zeeman G, Wijffels RH, Buisman CJN (2013) Microalgae growth on concentrated human urine. J Appl Phycol 26(1):287–297. doi:10.1007/s10811-013-0108-2

    Google Scholar 

  • Tuantet K, Temmink H, Zeeman G, Janssen M, Wijffels RH, Buisman CJN (2014) Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Res 55:162–174. doi:10.1016/j.watres.2014.02.027

    CAS  PubMed  Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2007) Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 45(2):309–311. doi:10.1007/s11099-007-0052-y

    Google Scholar 

  • Wan M, Liu P, Xia J, Rosenberg J, Oyler G, Betenbaugh M, Nie Z, Qiu G (2011) The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Appl Microbiol Biotechnol 91(3):835–844. doi:10.1007/s00253-011-3399-8

    CAS  PubMed  Google Scholar 

  • Wan M-X, Wang R-M, Xia J-L, Rosenberg JN, Nie Z-Y, Kobayashi N, Oyler GA, Betenbaugh MJ (2012) Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng 109(8):1958–1964. doi:10.1002/bit.24477

    CAS  PubMed  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2009) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotech 162(4):1174–1186. doi:10.1007/s12010-009-8866-7

    Google Scholar 

  • Wang L, Li Y, Chen P, Min M, Chen Y, Zhu J, Ruan RR (2010) Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technol 101(8):2623–2628. doi:10.1016/j.biortech.2009.10.062

    CAS  Google Scholar 

  • Watanabe K, Takihana N, Aoyagi H, Hanada S, Watanabe Y, Ohmura N, Saiki H, Tanaka H (2005) Symbiotic association in Chlorella culture. FEMS Microbiol Ecol 51(2):187–196. doi:10.1016/j.femsec.2004.08.004

    CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee SH, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. vol 18. Academic Press, Inc, New York, pp 315–322

    Google Scholar 

  • Williams DR, Rowe JJ, Romero P, Eagon RG (1978) Denitrifying Pseudomonas aeruginosa: some parameters of growth and active transport. Appl Environ Microb 36(2):257–263

    CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technol 102(1):159–165. doi:10.1016/j.biortech.2010.07.017

    CAS  Google Scholar 

  • Zhang Y, Su H, Zhong Y, Zhang C, Shen Z, Sang W, Yan G, Zhou X (2012) The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Res 46(17):5509–5516. doi:10.1016/j.watres.2012.07.025

    CAS  PubMed  Google Scholar 

  • Zhang T-Y, Wu Y-H, S-f Z, Li F-M, Hu H-Y (2013) Isolation and heterotrophic cultivation of mixotrophic microalgae strains for domestic wastewater treatment and lipid production under dark condition. Bioresource Technol 149:586–589. doi:10.1016/j.biortech.2013.09.106

    CAS  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technol 102(13):6909–6919. doi:10.1016/j.biortech.2011.04.038

    CAS  Google Scholar 

  • Zhou W, Hu B, Li Y, Min M, Mohr M, Du Z, Chen P, Ruan R (2012) Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production. Appl Biochem Biotech 168(2):348–363. doi:10.1007/s12010-012-9779-4

    CAS  Google Scholar 

  • Zhou Y, Schideman L, Yu G, Zhang Y (2013) A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling. Energ Environ Sci 6(12):3765. doi:10.1039/c3ee24241b

    CAS  Google Scholar 

  • Zimmo OR, van der Steen NP, Gijzen HJ (2003) Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Res 37(19):4587–4594. doi:10.1016/j.watres.2003.08.013

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from US EPA P3 Award Program (Grant No. SU835318) and from US NSF CBET Program (Grant No. 1236691) and the Bureau of Education and Cultural Affairs of US Department of State through an International Fulbright Science and Technology Award to Pavlo Bohutskyi. Partial support was also provided by a fellowship to Julian Rosenberg from the Johns Hopkins Environment, Energy, Sustainability & Health Institute (E2SHI). The authors would also like to thank Nick Frankos and Marshall Phillips, the management of the Baltimore Wastewater Treatment Plant, for their assistance in collection of wastewater and anaerobic digestion effluent samples used in this study. Finally, we would like to thank Minxi Wan for providing the Chlorella sorokiniana (CCTCC M209220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Bohutskyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohutskyi, P., Liu, K., Nasr, L.K. et al. Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotechnol 99, 6139–6154 (2015). https://doi.org/10.1007/s00253-015-6603-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6603-4

Keywords

Navigation