Skip to main content
Log in

Exploration of industrially important pigments from soil fungi

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The worldwide interest of the current era is to increase tendency towards the use of natural substances instead of synthetic ones. So, alternative and effective environment friendly sustainable technologies are highly needed. Due to a broad range of biological activities, fungi are considered as a significant source of pigments. Among the fungal species in the soil, the genera of Aspergillus, Fusarium, Penicillium, Paecilomyces, and Trichoderma are dominant. The pigments commonly produced by fungi belong to aromatic polyketide groups such as melanins, quinones, flavins, ankaflavin, anthraquinone, and naphthoquinone. The use of fungal pigments has benefits which comprise easy and fast growth in the cheap culture medium and different color shades being independent of weather conditions and would be useful in various industrial applications. In relation to the toxic effects of the synthetic dyes, the natural dyes are easily degradable since they cause no detrimental effects. Thus, the study of pigments produced by soil fungi has tremendous use in medical, textile coloring, food coloring, and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aishwarya A d (2014) Extraction of natural dyes from fungus—an alternative for textile dyeing. J Nat Sci Res 4:1–6

    Google Scholar 

  • Ajdari Z, Ebrahimpour A, Manan MA, Hamid M, Mohamad R, Ariff AB (2011) Nutritional requirements for the improvement of growth and sporulation of several strains of Monascus purpureus on solid state cultivation. J Biomed Biotechnol. 1–9. doi:10.1155/2011/487329

  • Atalla MM, Elkhrisy EAM, Asem MA (2011) Production of textile reddish brown dyes by fungi. Malaysian J Microbiol 7:33–40

    Google Scholar 

  • Babitha S (2009) Microbial pigments. Biotechnol Agro-Ind Residues Utilisation 153–168. doi: 10.1007/978-1-4020-9942-7_8

  • Babitha S, Soccol CR, Pandey A (2007) Solid-state fermentation for the production of Monascus pigments from jack fruit seed. Biores Technol 98:1554–1560. doi:10.1016/j.biortech.2006.06.005

    Article  CAS  Google Scholar 

  • Babitha S, Carvahlo JC, Soccol CR, Pandey A (2008) Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid state fermentation. World J Microbiol Biotechnol 24:2671–2675. doi:10.1007/s11274-008-9794-3

    Article  CAS  Google Scholar 

  • Babula P, Adam V, Havel L, Kizek R (2009) Noteworthy secondary metabolites naphthoquinones—occurrence, pharmacological properties and analysis. Curr Pharma Analysis 5:47–68. doi:10.2174/157341209787314936

    Article  CAS  Google Scholar 

  • Baneshi F, Azizi M, Saberi M, Farsi M (2014) Gibberellic acid, amino acids (glycine and L-leucine), vitamin B2 and zinc as factors affecting the production pigments by Monascus purpureus in a liquid culture using response surface methodology. Afric J Biotechnol 13:1484–1490

  • Boonyapranai K, Tungpradit R, Hieochaiphant S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiag Mai J Sci 35:457–466

    CAS  Google Scholar 

  • Brikinshaw JH, Kalyanpur MG, Stickings CE (1963) Studies in the biochemistry of microorganisms 113. Pencolide a nitrogen containing-metabolite of Penicillium multicolor grigorieva-manilova and poradielova. Biochem J 86:237–243

    Article  Google Scholar 

  • Buchi G, White JD, Wogan GN (1965) The structures of mitorubrin and mitorubrinol. J American Chem Society 87:3484–3489. doi:10.1021/ja01093a036

    Article  Google Scholar 

  • Buhler RMM, Dutra AC, Vendruscolo F, Moritz DE, Ninow JL (2013) Monascus pigment production in bioreactor using a co-product of biodiesel as substrate. Cienc Technol Aliment Campinas 33:9–13. doi:10.1590/S0101-20612013000500002

    Article  Google Scholar 

  • Caro Y, Anamale L, Fouillaud M, Laurent P, Petit T, Dufosse L (2012) Natural hydroxyanthraquinoid pigments as potent food grade colorants: an overview. Nat Prod Bioprospect 2:174–193. doi:10.1007/s13659-012-0086-0

    Article  PubMed Central  CAS  Google Scholar 

  • Carvalho JCD, Oishi BO, Pandey A, Soccol CR (2005) Biopigments from Monascus: strains selection, citrinin production and color stability. Braz Arch Biol Technol 48:885–894. doi:10.1590/S1516-89132005000800004

    Article  Google Scholar 

  • Carvalho JC, Oishi BO, Woiciechowski AL, Pandey A, Babitha S, Soccol CR (2007) Effect of substrates on the production of Monascus biopigments by solid-state fermentation and pigment extraction using different solvents. Indian J Biotechnol 6:194–199

    CAS  Google Scholar 

  • Celestino JR, Carvalho LE, Lima MP, Lima AM, Ogusku MM, Souza JVB (2014) Bioprospecting of Amazon soil fungi with the potential for pigment production. Proc Biochem 49:569–575. doi:10.1016/j.procbio.2014.01.018

    Article  CAS  Google Scholar 

  • Chattopadhyay P, Chatterjee S, Sen SK (2008) Biotechnological potential of natural food grade biocolorants. Afr J Biotechnol 7:2972–2985

    CAS  Google Scholar 

  • Chidananda C, Sattur AP (2007) Sclerotiorin, a novel inhibitor of lipoxygenase from Penicillium frequentans. J Agric Food Chem 55:2879–2883. doi:10.1021/jf062032x

    Article  CAS  PubMed  Google Scholar 

  • Chitale A, Jadhav DV, Waghmare SR, Sahoo AK, Ranveer RC (2012) Production and characterization of brown colored pigment from Trichoderma viride. Electronic J Environ Agric Food Chem 11:529–537

    CAS  Google Scholar 

  • Cho YJ, Hwang HJ, Kim SW, Song CH, Yun JW (2002a) Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J Biotechnol 95:13–23. doi:10.1016/S0168-1656(01)00445-X

    Article  CAS  PubMed  Google Scholar 

  • Cho YJ, Park JP, Hwang HJ, Kim SW, Choi JW, Yun JW (2002b) Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett Appl Microbiol 35:195–202. doi:10.1046/j.1472-765X.2002.01168.x

    Article  CAS  PubMed  Google Scholar 

  • Dhale MA, Vijay Raj AS (2009) Pigment and amylase production in Penicillium sp NIOM-02 and its scavenging activity. Int J Food Sci Technol 44:224–2430

    Article  Google Scholar 

  • Dikshit R, Tallapragada P (2011) Monascus purpureus: a potential source for natural pigment production. J Microbiol Biotechnol Res 1:164–174

    CAS  Google Scholar 

  • Dufosse L (2006) Microbial production of food grade pigments. Food Technol Biotechnol 44:313–321

    CAS  Google Scholar 

  • Dufosse L (2009) Pigment, Microbial. Appl Microbiol: Industrial 457–471

  • Dufosse L (2014) Anthraquinones, the Dr Jekyll and Mr. Hyde of the food pigment family. Food Res Int 65:132–136. doi:10.1016/j.foodres.2014.09.012

    Article  CAS  Google Scholar 

  • Dufosse L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganism and microalgae as source of pigments for food use: a scientific oddity or an industrial reality. Trends Food Sci Technol 16:389–406. doi:10.1016/j.tifs.2005.02.006

    Article  CAS  Google Scholar 

  • Dufosse F, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61. doi:10.1016/j.copbio.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  • Durán N, Teixeira MFS, Conti RD, Esposito E (2002) Ecological-friendly pigments from fungi. Critical Rev Food Sci Nutrition 42:53–66. doi:10.1080/10408690290825457

    Article  Google Scholar 

  • Espinoza-Hernandez TC, Rodriguez-Herrera R, Aguilar-Gonzalez CO, Lara-Victoriano F, Reyes-Valdes MH, Castillo-Reyes F (2013) Characterization of three novel pigment-producing Penicillium strains isolated from the Mexican semi-desert. Afric J Biotechnol 12:3405–3413. doi:10.5897/AJB2013.12338

    CAS  Google Scholar 

  • Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99. doi:10.1134/S000368381302004X

    Article  CAS  Google Scholar 

  • Geweely NS (2011) Investigation of the optimum condition and antimicrobial activities of pigments from four potent-producing fungal species. J Life Sci 5:697–711. doi:10.4172/2153-2435.10000S2

    Google Scholar 

  • Gunasekaran S, Poorniammal R (2008) Optimization of fermentation conditions for red pigment production from Penicillium sp under submerged fermentation. Afric J Biotechnol 7:1894–1898

    CAS  Google Scholar 

  • Gupta C, Sharma D, Aggarwal S, Nagpal N (2013) Pigment production from Trichoderma sp. for dyeing of silk and wool. Int J Sci Nature 4:351–355

    CAS  Google Scholar 

  • Haggblom P, Unestam T (1979) Blue light inhibits mycotoxin production and increases total lipids and pigmentation in Alternaria alternate. Appl Environ Microbiol 38:1074–1077

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hailei W, Zhifang R, Ping L, Yanchang G, Guoshang L, Jianming Y (2011) Improvement of the production of a red pigment in Penicillium sp HSDO7B synthesized during co-culture with Candida tropicalis. Biores Technol 102:6082–6087. doi:10.1016/j.biortech.2011.01.040

    Article  Google Scholar 

  • Hajjaj H, Blanc PJ, Goma G, Francois J (1998) Sampling techniques and comparative extaction procedures for quantitative determination of intra – and extracellular metabolites in filamentous fungi. FEMS Microbiol Letters 164:195–200

  • Hamano PS, Kilikian BV (2006) Production of red pigments by Monascus ruber in culture media containing corn steep liquor. Braz J Chem Eng 23:443–449. doi:10.1590/S0104-66322006000400002

    Article  CAS  Google Scholar 

  • Han O, Mudgett RE (1992) Effects of oxygen and carbon dioxide partial pressure on Monascus growth and pigment production in solid-state fermentations. Biotechnol Prog 8:5–10

  • Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919. doi:10.1105/tpc.7.7.907

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hobson DK, Wales DS (1998) Green dyes. J Studies Dynamics Change 114:42–44

    CAS  Google Scholar 

  • Jens F, Mapari SAS, Meyer AS, Ulf T (2012) Production of Monascus like pigment. Technical University Denmark

  • Joshi VK, Attri D, Bala A, Bhushan S (2003) Microbial pigments. Int J Biotechnol 2:362–369

    CAS  Google Scholar 

  • Juzlova P, Martinkova KV (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170. doi:10.1007/BF01569999

    Article  CAS  Google Scholar 

  • Kamala T, Indiradevi S, Chandradev Sharma K, Kennedy K (2015) Phylogeny and taxonomical investigation of Trichoderma spp. From Indian region of Indo-Burma biodiversity hot spot region with special reference to Manipur. BioMed Res International 1–21. doi: 10.1155/2015/285261

  • Keller N, Turner G, Bennett J (2005) Fungal secondary metabolism from biochemistry to genomics. Nat Rev Microbiol 3:937–947. doi:10.1038/nrmicro1286

    Article  CAS  PubMed  Google Scholar 

  • Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH, Fedorova ND (2010) SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Gen Biol 47:736–741. doi:10.1016/j.fgb.2010.06.003

    Article  CAS  Google Scholar 

  • King TJ, Roberts JC, Thompson DJ (1970) The structure of purpurogenone, a metabolite of Penicillium purpurogenum stoll: an X-Ray study. J Chem Soc D. doi:10.1039/C2970001499A

    Google Scholar 

  • Kirti K, Amita S, Priti S, Kumar AM, Jyoti S (2014) Colorful world of microbes: Carotenoids and their applications. Adv Biol 1–13. doi.org/10.1155/2014/837891

  • Kiss GC, Forgacsa E, Cserhatia T, Vizcainob JA (2000) Colour pigments of Trichoderma harzianum: preliminary investigations with thin-layer chromatography–Fourier transform infrared spectroscopy and high-performance liquid chromatography with diode array and mass spectrometric detection. J Chromatography A 896:61–68. doi:10.1016/S0021-9673(00)00413-1

    Article  CAS  Google Scholar 

  • Kumar A, Verma U, Sharma U (2012) Antibacterial activity Monascus purpureus (red pigment) isolated from rice malt. Asian J Biol life Sci 1:252–255

    Google Scholar 

  • Kurobane I, Zaita N, Fukuda A (1986) New metabolites of Fusarium martii related to dihydrofusarubin. J Antibiot 39:205–214. doi:10.7164/antibiotics.39.205

    Article  CAS  PubMed  Google Scholar 

  • Lee BK, Park NH, Piao HY, Chung WJ (2001) Production of red pigments by Monascus purpureus in submerged culture. Biotechnol Bioprocess Eng 6:341–346

    Article  CAS  Google Scholar 

  • Lim HS, Yoo SK, Shin CS, Hyun YM (2000) Monascus red pigment overproduction by coculture with recombinant Saccharomyces cervisiae secreting glucoamylase. J Microbiol 38:48–51

    CAS  Google Scholar 

  • Lin TF, Demain AL (1991) Effect of nutrition of Monascus sp. on formation of red pigments. Appl Microbiol Biotechnol 36:70–75. doi:10.1007/BF00164701

    Article  CAS  Google Scholar 

  • Liu R, Lu Y, Wu T, Pan Y (2008) Simultaneous isolation and purification of mollugin and two anthraquinones from Rubia cordifolia by HSCCC. Chromatographia 68:95–99. doi:10.1365/s10337-008-0629-z

    Article  CAS  Google Scholar 

  • Liu Q, Xie N, He Y, Wang L, Shao Y, Chen F (2014) MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7. Appl Microbiol Biotechnol 98:285–296. doi:10.1007/s00253-013-5289-8

    Article  CAS  PubMed  Google Scholar 

  • Lopes FC, Tichota DM, Pereira JQ, Segalin J, Rios AO, Brandelli A (2013) Pigment production by filamentous fungi on agro-industrial byproducts: an ecofriendly alternative. Appl Biochem Biotechnol 171:616–625. doi:10.1007/s12010-013-0392-y

    Article  CAS  PubMed  Google Scholar 

  • Lucas EMF, MonteirodeCastro MC, Takashi JA (2007) Antimicrobial properties of sclerotiorin, isochromophilone VI and pencolide, metabolites from a Brazalian Cerrado isolate of Penicillium sclerotiorum van beyma. Braz J Microbiol 38:785–789. doi:10.1590/1517-83822007000400036

    Article  Google Scholar 

  • Lucas EMF, Machado Y, Ferreira AA, Dolabella LMP, Takahashi JA (2010) Improved production of pharmacologically-active sclerotiorin by Penicillium sclerotiorum. Tropical J Pharma Res 9:365–371

    CAS  Google Scholar 

  • Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238. doi:10.1016/j.copbio.2005.03.004

    Article  CAS  PubMed  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U (2006) Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants. J Agric Food Chem 54:7027–7035. doi:10.1021/jf062094n

    Article  CAS  PubMed  Google Scholar 

  • Mapari SAS, Meyer AS, Thrane U, Risvad JCF (2009) Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale microbial cell factories. Microb Cell Factories 8:1–15. doi:10.1186/1475-2859-8-24

    Article  Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants. Trends Biotechnol 28:300–307. doi:10.1016/j.tibtech.2010.03.004

    Article  CAS  PubMed  Google Scholar 

  • Martinkova L, Juzlova P, Vesely D (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616. doi:10.1111/j.1365-2672.1995.tb00944.x

    Article  CAS  Google Scholar 

  • Meinicke RM, Vendruscolo F, Moritz DE, Dd O, Schmidell W, Samohyl RW, Ninow JL (2012) Potential use of glycerol as substrate for the production of red pigments by Monascus ruber in submerged fermentation. Biocatal Agric Biotechnol 1:238–242. doi:10.1016/j.bcab.2012.03.001

    CAS  Google Scholar 

  • Mendentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochem 47:935–959

    Article  Google Scholar 

  • Mendez A, Perez C, Montaez JC, Martinez G, Aguilar CN (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 12:961–968. doi:10.1631/jzus.B1100039

    Article  CAS  Google Scholar 

  • Mehrabian S, Majd A, Majd I (2000) Antimicrobial effects of three plants (Rubia tinctorum, Carthamus tinctorius and Juglans regia) on some airborne microorganisms. Aerobiologia 16:455–458

  • Miao F-P, Li X-D, Liu X-H, Cichewicz RH, Ji N-Y (2012) Secondary metabolites from an algicolous Aspergillus versicolor strain. Marine drugs 10:131–139. doi:10.3390/md10010131

  • Micetich RG, Macdonald JC (1965) Biosynthesis of neoaspergillic and neohydroxyaspergillic acids. J Biol Chem 240:1692–1695

    CAS  PubMed  Google Scholar 

  • Moharram AM, Eman MM, Ismail MA (2012) Chemical profile of Monascus ruber strains. Food Technol Biotechnol 50:490–499

    CAS  Google Scholar 

  • Mortensen A (2006) Carotenoids and other pigments as natural colorants. Pure Appl Chem 78:1477–1491

  • Mostafa ME, Abbady MS (2014) Secondary metabolites and bioactivity of the Monascus pigments review article. Global J Biotechnol Biochem 9:1–13. doi:10.5829/idosi.gjbb.2014.9.1.8268

    CAS  Google Scholar 

  • Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a velvet protein, vel1. Appl Environ Microbiol 76:2345–2352. doi:10.1128/AEM.02391-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukherjee G, Singh SK (2011) Purification and characterization of a red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46:188–192. doi:10.1016/j.procbio.2010.08.006

    Article  CAS  Google Scholar 

  • Musaalbakri AM, Ariff A, Rosfarizan M, Ismail AKM (2006) Improvement of red pigment producing fungal strain (Monascus purpureus FTC 5391) using monospore isolation technique. J Trop Agric Fd Sci 34:77–87

    Google Scholar 

  • Nagia FA, EL-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes and pigm 75:550–555. doi:10.1016/j.dyepig.2006.07.002

    Article  CAS  Google Scholar 

  • Neethu K, Rubeena M, Sajith S, Sreedevi S, Priji P, Unni KN, SarathJosh MK, Jisha VN, Pradeep S, Benjamin S (2012) A novel strain of Trichoderma viride shows complete lignocellulolytic activities. Advances in Biosci Biotechnol 3:1160–1166. doi:10.4236/abb.2012.38142

    Article  Google Scholar 

  • Nerurka M, Vaidyanathan J, Adivarekar R, Langdana ZB (2013) Use of natural dye from Serratia marcescens subspecies marcescens in dyeing of textile fabrics. Octa J Environ Res 1:129–135

    Google Scholar 

  • Ogihara J, Kato J, Oishi K, Fujimoto Y, Eguchi T (2000) Production and structural analysis of PP-V, a homologue of monascorubramine, produced by a new isolate of Penicillium sp. J Biosci Bioeng 90:549–554

    Article  CAS  PubMed  Google Scholar 

  • Petit P, Lucas EMF, Abreu LM, Pfenning LH, Takahashi JA (2009) Novel antimicrobial secondary metabolites from a Penicillium sp. isolated from Brazilian cerrado soil. Electro J Biotechnol 12:1–9. doi:10.2225/vol12-issue4-fulltext-9

    Google Scholar 

  • Pisareva E, Savov V, Kujumdzieva V (2005) Pigments and citrinin biosynthesis by fungi belonging to genus Monascus. Z Naturforsch C 60:116–120

    Article  CAS  PubMed  Google Scholar 

  • Poorniammal R, Parthiban M, Gunasekaran S, Murugesan R, Thilagavathy R (2013) Natural dye production from Thermomyces sp. fungi for textile application. Indian J Fiber Textile Res 38:276–279

    CAS  Google Scholar 

  • Pradeep FS, Shakilabegam M, Palaniswamy M, Pradeep BV (2013) Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Appl Sci J 22:70–77. doi:10.5829/idosi.wasj.2013.22.01.7265

    Google Scholar 

  • Ray AC, Eakin RE (1975) Studies on the biosynthesis of Aspergillin by Aspergillus niger. Appl Microbiol 30:909–915

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sagaram US, Kolomiets M, Shim W (2006) Regulation of fumonisin biosynthesis in Fusarium verticilloides—maize system. Plant Pathol J 22:203–210

    Article  Google Scholar 

  • Samanta AK, Agarwal P (2009) Applications of natural dyes on textile dyes. Indian J Fiber Textile Res 34:384–399

    CAS  Google Scholar 

  • Santis DD, Moresi M, Gallo AM, Petruccioli M (2005) Assessment of the dyeing properties of pigments from Monascus purpureus. J Chem Technol Biotechnol 80:1072–1079

  • Santos-ebinuma VC, Roberto IC, Teixeira MFS, Passoajr A (2013a) Improving of red colorants production by a new Penicillium purpurogenum strain in submerged culture and the effect of different parameters in their stability. Biotechnol Prog 29:778–785. doi:10.1002/btpr.1720

    Article  CAS  PubMed  Google Scholar 

  • Santos-ebinuma VC, Teixeira MFS, Pessoajr A (2013b) Submerged culture conditions for the production of alternative natural colorants by a new isolated Penicillium purpurogenum DPUA 1275. J Microbiol Biotechnol 23:802–810. doi:10.4014/jmb.1211.11057

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan P, Raja R, Karthik C, Sharma R, Indra Arulselvi P (2013) Isolation and characterization of yellow pigment producing Exiguobacterium sp. J Biochem Tech 4:632–635

    CAS  Google Scholar 

  • Scholes DR, Paige KN (2015) Plasticity in ploidy: a generalized response to stress. Trends Plant Sci 20:165–175

    Article  CAS  PubMed  Google Scholar 

  • Schuster A, Schmoll M (2012) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799. doi:10.1007/s00253-010-2632-1

    Article  Google Scholar 

  • Sewekow U (1988) Natural dyes—an alternative to synthetic dyes. Melliand Textilber 69:145–148

    Google Scholar 

  • Sharma D, Gupta C, Aggarwal S, Nagpal N (2012) Pigment extraction from fungus for textile dyeing. Indian J Fiber Textile Res 37:68–73

    CAS  Google Scholar 

  • Srianta I, Ristiarini S, Nugerahani I, Sen SK, Zhang BB, Xu GR, Blanc PJ (2014) Recent research and development of Monascus fermentation products. Int Food Res J 21:1–12

    CAS  Google Scholar 

  • Sudha, Gupta C, Aggarwal S (2014) Novel Bio-colorants for textile application from fungi. J Textile Ass 282–287

  • Sweeny JG, Estrda-Valdes MC, Iacobucci GA, Sato H, Sakamura S (1981) Photoprotection of the red pigments of Monascus anka in aqueous media by 1, 4, 6-Trihydroxynaphthalene. J Agric Food Chem 29:1189–1193. doi:10.1021/jf00108a023

    Article  CAS  Google Scholar 

  • Tajick MA, Khani HSM, Babaeizad V (2014) Identification of biological secondary metabolites in three Penicillium species, P. goditanum, P. moldavicum and P. corylophilum. Prog biol sci 4:53–61

    Google Scholar 

  • Takahashi JA, Carvalho SA (2010) Nutritional potential of biomass metabolites from filamentous fungi. Curr Res Edu Topics Appl Microbiol Microbial Biotechnol 1126–1135

  • Teixeria MFS, Martins MS, Silva JCD, Kirsch LS, Fernandes OC, Carneirol ALB, Conti RD, Duran N (2012) Amazonian biodiversity: pigments from Aspergillus and Penicillium—characterizations, antibacterial activities and their toxicities. Current Trends Biotechnol Pharmacy 6:300–311

    Google Scholar 

  • Velisek J, Cejpek K (2011) Pigments of higher fungi: a review. Czech J Food Sci 29:87–102

    CAS  Google Scholar 

  • Velmurugan P, Chae JC, Lakshmanaperumalsamy P, Yun BS, Lee KJ, Oh BT (2009) Assessment of the dyeing properties of pigments from five fungi and anti-bacterial activity of dyed cotton fabric and leather. Coloration Technol 125:334–341. doi:10.1111/j.1478-4408.2009.00215.x

  • Velmurugan P, Kamala Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010a) Natural pigment extraction from five filamentous fungi for industrial application and dyeing of leather. Carbohydrate polymer 79:262–268. doi:10.1016/j.carbpol.2009.07.058

  • Velmurugan P, Kim MJ, Park JS, Karthikeyan K, Lakshmanaperumalsamy P, Lee KJ, Park YJ, Oh BT (2010b) Dyeing of cotton yarn with five water soluble fungal pigments obtained from five fungi. Fibers and Polymers 11:598–605. doi:10.1007/s12221-010-0598-5

  • Velmurugan P, Lee YH, Nanthakumar K, Kamalakannan S, Dufosse L, Mapari SAS, Oh BT (2010c) Water soluble red pigments from Isaria farinosa and structural characterization of the main colored component. J Basic Microbiol 50:581–590. doi:10.1002/jobm.201000097

  • Velmurugan P, Lee YH, Venil CK, Lakshmanaperumalsamy P, Chae JC, TaekOh B (2010d) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346–350. doi:10.1016/j.jbiosc.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  • Vendruscolo F, Pitol LO, Carciofi BAM, Moritz DE, Laurindo JB, Schmidell W, Ninow JL (2010) Construction and application a vane system in a rotational rheometer for determination of the rheological properties of Monascus ruber CCT 3802. J Biorheol 24:29–35. doi:10.1007/s12573-010-0019-7

    Article  Google Scholar 

  • Vendruscolo F, Tosin I, Giachini AJ, Schmidelli W, Ninowi J (2013) Antimicrobial activity of Monascus pigments produced in submerged fermentation. J Food Processing Preservation 38:1860–1865. doi:10.1111/jfpp.12157

    Article  Google Scholar 

  • Venil CK, Lakshmanaperumalsamy P (2009) An insightful overview on microbial pigment, prodiogiosin. Electro J Biol 5:49–61

    Google Scholar 

  • Wang JJ, Lee CL, Pan TM (2004) Modified mutation method for screening low citrinin-producing strains of Monascus purpureus on rice culture. J Agric Food Chem 52:6977–6982. doi:10.1021/jf049783o

    Article  CAS  PubMed  Google Scholar 

  • Xu MJ, Yang ZL, Liang ZZ, Zhou SN (2009) Construction of a Monascus purpureus mutant showing lower citrinin and higher production by replacement of ctnA with pks1 without using vector and resistance gene. J Agric Food Chem 57:9764–9768. doi:10.1021/jf9023504

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Liu J, Luo F, Lin Q, Rosol TJ (2014) Anticancer properties of Monascus metabolites. Anti-Cancer Drugs 25:735–744. doi:10.1097/CAD.0000000000000102

    Article  CAS  PubMed  Google Scholar 

  • Zhang YQ, Brock M, Keller NP (2004) Connection of propioyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans. Genet 168:785–794. doi:10.1534/genetics.104.027540s

    Article  CAS  Google Scholar 

  • Zhang X, Wang J, Chan M, Wang C (2013) Effect of nitrogen sources on production and photostability of Monascus pigments in liquid fermentation. IERI Procedia 5:344–350. doi:10.1016/j.ieri.2013.11.114

    Article  Google Scholar 

Download references

Acknowledgments

The authors are sincerely grateful to the Management, Karpagam Academy of Higher Education, Coimbatore—641 021, Tamil Nadu, India, for the constant encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. Pradeep.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akilandeswari, P., Pradeep, B.V. Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol 100, 1631–1643 (2016). https://doi.org/10.1007/s00253-015-7231-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7231-8

Keywords

Navigation