Skip to main content

Advertisement

Log in

Synthesis and structural characterization of raffinosyl-oligofructosides upon transfructosylation by Lactobacillus gasseri DSM 20604 inulosucrase

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A new process based on enzymatic synthesis of a series of raffinose-derived oligosaccharides or raffinosyl-oligofructosides (RFOS) with degree of polymerization (DP) from 4 to 8 was developed in the presence of raffinose. This process involves a transfructosylation reaction catalyzed by an inulosucrase from Lactobacillus gasseri DSM 20604 (IS). The main synthesized RFOS were structurally characterized by nuclear magnetic resonance (NMR). According to the elucidated structures, RFOS consist of β-2,1-linked fructose unit(s) to raffinose: α-d-galactopyranosyl-(1 → 6)-α-d-glucopyranosyl-(1↔2)-β-d-fructofuranosyl-((1 ← 2)-β-d-fructofuranoside)n (where n refers to the number of transferred fructose moieties). The maximum yield of RFOS was 33.4 % (in weight respect to the initial amount of raffinose) and was obtained at the time interval of 8–24 h of transfructosylation reaction initiated with 50 % (w/v) of raffinose. Results revealed the high acceptor and donor affinity of IS towards raffinose, being fairly comparable with that of sucrose for the production of fructooligosaccharides (FOS), including when both carbohydrates coexisted (sucrose/raffinose mixture, 250 g L−1 each). The production of RFOS was also attempted in the presence of sucrose/melibiose mixtures; in this case, the predominant acceptor-product formed was raffinose followed by a minor production of a series of oligosaccharides with varying DP. The easiness of RFOS synthesis and the structural similarities with both raffinose and fructan series of oligosaccharides warrant the further study of the potential bioactive properties of these unexplored oligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersone I, Auzina L, Vigants A, Mutere O, Zikmanis P (2004) Formation of levan from raffinose by levansucrase of Zymomonas mobilis. Eng Life Sci 4:56–59. doi:10.1002/elsc.200400006

    Article  CAS  Google Scholar 

  • Anwar MA, Kralj S, Piqué AV, Leemhuis H, van der Maarel MJEC, Dijkhuizen L (2010) Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products. Microbiology 156:1264–1274. doi:10.1099/mic.0.036616-0

    Article  CAS  PubMed  Google Scholar 

  • Canedo M, Jimenez-Estrada M, Cassani J, López-Munguia A (1999) Production of maltosylfructose (erlose) with levansucrase from Bacillus subtilis. Biocatal Biotransform 16:475–485. doi:10.3109/10242429909015223

    Article  CAS  Google Scholar 

  • Côté GL, Dunlap CA, Vermillion KE (2009) Glucosylation of raffinose via alternansucrase acceptor reactions. Carbohyd Res 344:1951–1959. doi:10.1016/j.carres.2009.06.023

    Article  Google Scholar 

  • Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Bartolomeo F, Startek JB, Van den Ende W (2013) Prebiotics to fight diseases: reality or fiction? Phytother Res 27:1457–1473. doi:10.1002/ptr.4901

    PubMed  Google Scholar 

  • Díez-Municio M, de las Rivas B, Jimeno ML, Muñoz R, Moreno FJ, Herrero M (2013) Enzymatic synthesis and characterization of fructooligosaccharides and novel maltosylfructosides by inulosucrase from Lactobacillus gasseri DSM 20604. Appl Environ Microbiol 79:4129–4140. doi:10.1128/AEM.00854-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Díez-Municio M, Herrero M, Olano A, Moreno FJ (2014a) Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases. Microb Biotechnol 7:315–331. doi:10.1111/1751-7915.12124

    Article  PubMed  PubMed Central  Google Scholar 

  • Díez-Municio M, Montilla A, Moreno FJ, Herrero M (2014b) A sustainable biotechnological process for the efficient synthesis of kojibiose. Green Chem 16:2219–2226. doi:10.1039/c3gc42246a

    Article  Google Scholar 

  • Díez-Municio M, González-Santana C, de las Rivas B, Jimeno ML, Muñoz R, Moreno FJ, Herrero M (2015) Synthesis of potentially-bioactive lactosyl-oligofructosides by a novel bi-enzymatic system using bacterial fructansucrases. Food Res Int 78:258–265. doi:10.1016/j.foodres.2015.09.035

    Article  Google Scholar 

  • Gimeno-Pérez M, Santos-Moriano P, Fernández-Arrojo L, Poveda A, Jiménez-Barbero J, Ballesteros AO, Fernández-Lobato M, Plou FJ (2014) Regioselective synthesis of neo-erlose by the β-fructofuranosidase from Xanthophyllomyces dendrorhous. Process Biochem 49:423–429. doi:10.1016/j.procbio.2013.12.018

    Article  Google Scholar 

  • Hernández-Hernández O, Côté GL, Kolida S, Rastall RA, Sanz ML (2011) In vitro fermentation of alternansucrase raffinose-derived oligosaccharides by human gut bacteria. J Agric Food Chem 59:10901–10906. doi:10.1021/jf202466s

    Article  PubMed  Google Scholar 

  • Hestrin S, Feingold DS, Avigad G (1956) The mechanism of polysaccharide production from sucrose. 3. Donor–acceptor specificity of levansucrase from Aerobacter levanicum. Biochem J 64:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakio S, Sainio J, Heljo P, Ervasti T, Kivikero N, Juppo A (2013) The tableting properties of melibiose monohydrate. Int J Pharm 456:528–535. doi:10.1016/j.ijpharm.2013.08.021

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Villaluenga C, Frias J (2014) Production and bioactivity of oligosaccharides in plant foods. In: Moreno FJ, Sanz ML (eds) Food oligosaccharides: production, analysis and bioactivity, 1st edn. Wiley, New York, pp 35–54

    Chapter  Google Scholar 

  • Martínez-Villaluenga C, Frias J, Vidal-Valverde C (2008) Alpha-galactosides: antinutritional factors or functional ingredients? Crit Rev Food Sci 48:301–316. doi:10.1080/10408390701326243

    Article  Google Scholar 

  • Mineo H, Hara H, Shigematsu N, Okuhara Y, Tomita F (2002) Melibiose, difructose anhydride III and difructose anhydride IV enhance net calcium absorption in rat small and large intestinal epithelium by increasing the passage of tight junctions in vitro. J Nutr 132:3394–3399

    CAS  PubMed  Google Scholar 

  • Montilla A, Corzo N, Olano A, Jimeno ML (2009) Identification of oligosaccharides formed during stachyose hydrolysis by pectinex ultra SP-L. J Agric Food Chem 57:5007–5013. doi:10.1021/jf900309x

    Article  CAS  PubMed  Google Scholar 

  • Montilla A, Olano A, Martínez-Villaluenga C, Corzo N (2011) Study of influential factors on oligosaccharide formation by fructosyltransferase activity during stachyose hydrolysis by Pectinex Ultra SP-L. J Agric Food Chem 59:10705–10711. doi:10.1021/jf202472p

    Article  CAS  PubMed  Google Scholar 

  • Ortíz-Soto M, Seibel J (2014) Biotechnological synthesis and transformation of valuable sugars in the food and pharmaceutical industry. Curr Org Chem 18:964–986

    Article  Google Scholar 

  • Ozimek LK, Kralj S, van der Maarel MJ, Dijkhuizen L (2006) The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 152:1187–1196. doi:10.1099/mic.0.28484-0

    Article  CAS  PubMed  Google Scholar 

  • Park NH, Choi HJ, Oh DK (2005) Lactosucrose production by various microorganisms harboring levansucrase activity. Biotechnol Lett 27:495–497. doi:10.1007/s10529-005-2539-6

    Article  CAS  PubMed  Google Scholar 

  • Robyt JF (1995) Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv Carbohydr Chem Biochem 51:133–168

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Karboune S (2012) Enzymatic synthesis of fructooligosaccharides by levansucrase from Bacillus amyloliquefaciens: specificity, kinetics, and product characterization. J Mol Catal B-Enzym 82:71–79. doi:10.1016/j.molcatb.2012.06.005

    Article  CAS  Google Scholar 

  • Tomita K, Nagura T, Okuhara Y, Nakajima-Adachi H, Shigematsu N, Aritsuka T, Kaminogawa S, Hachimura S (2007) Dietary melibiose regulates Th cell response and enhances the induction of oral tolerance. Biosci Biotechnol Biochem 71:2774–2780. doi:10.1271/bbb.70372

    Article  CAS  PubMed  Google Scholar 

  • Uhm TB, Baek NI, Jhon DY, Kim DM, Hwang KT, Ryu EJ (1999) Synthesis of new oligosaccharides from raffinose by Aspergillus niger fructosyltransferase. Biotech Tech 13:169–171

    Article  CAS  Google Scholar 

  • Van den Ende M (2013) Multifunctional fructans and raffinose family oligosaccharides. Front Plant Sci 4:247. doi:10.3389/fpls.2013.00247

    Article  PubMed  Google Scholar 

  • Van Hijum SAFT, Szalowska E, Van der Maarel MJEC, Dijkhuizen L (2004) Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiology 150:621–630. doi:10.1099/mic.0.26671-0

    Article  PubMed  Google Scholar 

  • Van Laere KM, Hartemink R, Beldman G, Pitson S, Dijkema C, Schols HA, Voragen AG (1999) Transglycosidase activity of Bifidobacterium adolescentis DSM 20083 alpha-galactosidase. Appl Microbiol Biotechnol 52:681–688. doi:10.1007/s002530051579

    Article  PubMed  Google Scholar 

  • Visnapuu T, Zamfir AD, Mosoarca C, Stanescu MD, Alamäe T (2009) Fully automated chip-based negative mode nanoelectrospray mass spectrometry of fructooligosaccharides produced by heterologously expressed levansucrase from Pseudomonas syringae pv. tomato DC3000. Rapid Commun Mass Spectrom 23:1337–1346. doi:10.1002/rcm.4007

  • Visnapuu T, Mardo K, Mosoarca C, Zamfir AD, Vigants A, Alamae T (2011) Levansucrases from Pseudomonas syringae pv. tomato and P. chlororaphis subsp. aurantiaca: substrate specificity, polymerizing properties and usage of different acceptors for fructosylation. J Biotechnol 155:338–349. doi:10.1016/j.jbiotec.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  • Yamamori A, Onodera S, Kikuchi M, Shiomi N (2002) Two novel oligosaccharides formed by 1F-fructosyltransferase purified from roots of asparagus (Asparagus officinalis L.). Biosci Biotech Biochem 66:1419–1422. doi:10.1271/bbb.66.1419

    Article  CAS  Google Scholar 

  • Zhang R, Zhao Y, Sun Y, Lu X, Yang X (2013) Isolation, characterization, and hepatoprotective effects of the raffinose family oligosaccharides from Rehmannia glutinosa Libosch. J Agric Food Chem 61:7786–7793. doi:10.1021/jf4018492

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M. Díez-Municio is supported by CSIC through JAE-Pre Programme co-funded by European Social Fund (ESF). M. Herrero thanks MICINN for his “Ramón y Cajal” contract. The authors gratefully acknowledge Dr. A. Gonçalves for the cloning of IS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Moreno.

Ethics declarations

Funding

This study was funded by the Ministerio de Economía y Competitividad (grant number AGL2011-27884) and by the Spanish Danone Institute.

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díez-Municio, M., Herrero, M., de las Rivas, B. et al. Synthesis and structural characterization of raffinosyl-oligofructosides upon transfructosylation by Lactobacillus gasseri DSM 20604 inulosucrase. Appl Microbiol Biotechnol 100, 6251–6263 (2016). https://doi.org/10.1007/s00253-016-7405-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7405-z

Keywords

Navigation