Skip to main content

Advertisement

Log in

Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and “ropy” products. Polysaccharides are involved in several mechanisms such as prebiosis and probiosis, tolerance to stress associated to food process, and technological properties of food. In this paper, we summarize the beneficial properties of exopolysaccharides (EPS) produced by LAB with particular attention to prebiotic properties and to the effect of exopolysaccharides on the LAB-host interaction mechanisms, such as bacterial tolerance to gastrointestinal tract conditions, ability of ESP-producing probiotics to adhere to intestinal epithelium, their immune-modulatory activity, and their role in biofilm formation. The pro-technological aspect of exopolysaccharides is discussed, focusing on advantageous applications of EPS in the food industry, i.e., yogurt and gluten-free bakery products, since it was found that these microbial biopolymers positively affect the texture of foods. Finally, the involvement of EPS in tolerance to stress conditions that are commonly encountered in fermented beverages such as wine is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anwar MA, Kralj S, Van Der Maarel MJEC, Dijkhuizen L (2008) The probiotic Lactobacillus johnsonii NCC 533 produces high molecular-mass inulin from sucrose by using an inulosucrase enzyme. Appl Environ Microb 74:3426–3433. doi:10.1128/Aem. 00377-08

    Article  CAS  Google Scholar 

  • Aoudia N, Rieu A, Briandet R, Deschamps J, Chluba J, Jego G, Garrido C, Guzzo C (2016) Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol 53:51–59

    Article  CAS  PubMed  Google Scholar 

  • Arena MP, Russo P, Capozzi V, López P, Fiocco D, Spano G (2014) Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Appl Microbiol Biotechnol 98:7569–7581

    Article  CAS  PubMed  Google Scholar 

  • Arendt EK, Ryan LA, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174

    Article  CAS  PubMed  Google Scholar 

  • Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66

    Article  CAS  PubMed  Google Scholar 

  • Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, Donohoe K, Harris D, Murphy L, Quail MA, Samuel G, Skovsted IC, Staum Kaltoft M, Barrell B, Reeves PR, Parkhill J, Spratt BG (2006) Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet 2:e31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berbegal C, Peña N, Russo P, Grieco F, Pardo I, Ferrer S, Spano G, Capozzi V (2016) Technological properties of Lactobacillus plantarum strains isolated from Apulia wines. Food Microbiol. doi:10.1016/j.fm.2016.03.002

    Google Scholar 

  • Betteridge A, Grbin P, Jiranek V (2015) Improving Oenococcus oeni to overcome challenges of wine malolactic fermentation. Trends Biotechnol 33:547–553

    Article  CAS  PubMed  Google Scholar 

  • Boels IC, Van Kranenburg R, Kanning MW, Chong BF, De Vos WM, Kleerebezem M (2003) Increased exopolysaccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster. Appl Environ Microbiol 69:5029–5031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouzar F, Cerning J, Desmazeaud M (1997) Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yogurt production. J Dairy Sci 80:2310–2317

    Article  CAS  Google Scholar 

  • Bove P, Russo P, Capozzi V, Gallone A, Spano G, Fiocco D (2013) Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol Res 168:351–359

    Article  CAS  PubMed  Google Scholar 

  • Broadbent JR, McMahon DJ, Welker D, Oberg C, Moineau S (2003) Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 86:407–423

    Article  CAS  PubMed  Google Scholar 

  • Capozzi V, Russo P, Beneduce L, Weidmann S, Grieco F, Guzzo J, Spano G (2010) Technological properties of Oenococcus oeni strains isolated from typical southern Italian wines. Letters Appl Microbiol 50:327–334

    Article  CAS  Google Scholar 

  • Capozzi V, Weidmann S, Fiocco D, Rieu A, Hols P, Guzzo J, Spano G (2011) Inactivation of a small heat shock protein affects cell morphology and membrane fluidity in Lactobacillus plantarum WCFS1. Res Microbiol 162:419–425

    Article  CAS  PubMed  Google Scholar 

  • Cerning J (1995) Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75:463–472

    Article  CAS  Google Scholar 

  • Chapot-Chartier MP, Vinogradov E, Sadovskaya I, Andre G, Mistou M-Y, Trieu-Cuot P, Furlan S, Bidnenko E, Courtin P, Péchoux C (2010) Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J Biol Chem 285:10464–10471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapot-Chartier MP, Monnet V, De Vuyst L (2011) Cell walls and exopolysaccharides of lactic acid bacteria. In: Ledeboer A, Hugenholtz J, Kok J, Konings W, Wouters J (eds) Thirty years of research on lactic acid bacteria. Media Labs, Rotterdam, pp. 113–132

    Google Scholar 

  • Chen YP, Chen MJ (2013) Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on germ-free mice. PLoS one 8(11):e78789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciezack G, Hazo L, Chambat G, Heyraud A, Lonvaud-Funel A, Dols-Lafargue M (2010) Evidence for exopolysaccharide production by Oenococcus oeni strains isolated from non ropy wines. J Appl Microbiol 108:499–509

    Article  CAS  PubMed  Google Scholar 

  • Coulon J, Houlès A, Dimopoulou M, Maupeu J, Dols-Lafargue M (2012) Lysozyme resistance of the ropy strain Pediococcus parvulus IOEB 8801 is correlated with beta-glucan accumulation around the cell. Int J Food Microbiol 159:25–29

    Article  CAS  PubMed  Google Scholar 

  • Dal Bello F, Walter J, Hertel C, Hammes WP (2001) In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis. Syst Appl Microbiol 24:232–237

    Article  CAS  Google Scholar 

  • Das D, Baruah R, Goyal A (2014) A food additive with prebiotic properties of an α-d-glucan from Lactobacillus plantarum DM5. Int J Biol Macromol 69:20–26

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev 23:153–177

    Article  PubMed  Google Scholar 

  • Denou E, Pridmore RD, Berger B, Panoff J-M, Arigoni F, Brüssow H (2008) Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 190:3161–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dertli E, Mayer MJ, Narbad A (2015) Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol 15:8–12. doi:10.1186/S12866-015-0347-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dimopoulou M, Vuillemin M, Campbell-Sills H, Lucas P, Ballestra P, Miot-Sertier C, Favier M, Coulon J, Moine V, Doco T, Roques M, Williams P, Petrel M, Gontier E, Moulis C, Remaud-Simeon M, Dols-Lafargue M (2014) Exopolysaccharides (EPS) synthesis by Oenococcus oeni: from genes to phenotypes. PLoS one 9:6e98898

    Article  CAS  Google Scholar 

  • Dimopoulou M, Bardeau T, Ramonet PY, Miot-Certier C, Claisse O, Doco T, Petrel M, Lucas P, Dols-Lafargue M (2016) Exopolysaccharides produced by Oenococcus oeni: from genomic and phenotypic analysis to technological valorization. Food Microbiol 53:10–17

    Article  PubMed  Google Scholar 

  • Doleyres Y, Schaub L, Lacroix C (2005) Comparison of the functionality of exopolysaccharides produced in situ or added as bioingredients on yogurt properties. J Dairy Sci 88:4146–4156

    Article  CAS  PubMed  Google Scholar 

  • Dols-Lafargue M, Lonvaud-Funel A (2009) Polysaccharide production by grapes, must, and wine microorganisms. Biol Microorg Grapes Must Wine, Springer:241–258

  • Dols-Lafargue M, Gindreau E, Le Marrec C, Chambat G, Heyraud A, Lonvaud Funel A (2007) Changes in red wine polysaccharides composition induced by malolactic fermentation. J Agric Food Chem 55:9592–9599

    Article  CAS  PubMed  Google Scholar 

  • Dols-Lafargue M, Lee HY, Le Marrec C, Heyraud A, Chambat G, Lonvaud-Funel A (2008) Characterization of gtf, a glucosyltransferase gene in the genomes of Pediococcus parvulus and Oenococcus oeni, two bacterial species commonly found in wine. Appl Environ Microbiol 74:4079–4090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donot F, Fontana A, Baccou J, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Dueñas M, Munduate A, Perea A, Irastorza A (2003) Exopolysaccharide production by Pediococcus damnosus 2.6 in a semidefined medium under different growth conditions. Int J Food Microbiol 87:113–120

    Article  PubMed  CAS  Google Scholar 

  • Dunne C, Murphy L, Flynn S, O’Mahony L, O’Halloran S, Feeney M, Morrissey D, Thornton G, Fitzgerald G, Daly C (1999) Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Lact Acid Bact Genet Metab Appl Springer:279–292

  • Fernández de Palencia P, Werning ML, Sierra-Filardi E, Dueñas MT, Irastorza A, Corbí AL, López P (2009) Probiotic properties of the 2-substituted (1, 3)-β-D-glucan-producing bacterium Pediococcus parvulus 2.6. Appl Environ Microbiol 75:4887–4891

    Article  PubMed Central  CAS  Google Scholar 

  • Fiocco D, Capozzi V, Goffin P, Hols P, Spano G (2007) Improved adaptation to heat, cold, and solvent tolerance in Lactobacillus plantarum. Appl Microbiol Biotechnol 77:909–915

    Article  CAS  PubMed  Google Scholar 

  • Fiocco D, Collins M, Muscariello L, Hols P, Kleerebezem M, Msadek T, Spano G (2009) The Lactobacillus plantarum ftsH gene is a novel member of the CtsR regulon. J Bacteriol 191:1688–1694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkenberg DM, Dejmek P, Skriver A, Guldager HS, Ipsen R (2006) Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. Int Dairy J 16:111–118

    Article  CAS  Google Scholar 

  • Galle S, Schwab C, Dal Bello F, Coffey A, Gänzle MG, Arendt EK (2012) Influence of in-situ synthesized exopolysaccharides on the quality of gluten-free sorghum sourdough bread. Int J Food Microbiol 155:105–112

    Article  CAS  PubMed  Google Scholar 

  • Garai-Ibabe G, Dueñas MT, Irastorza A, Sierra-Filardi E, Werning ML, López P, Corbí AL, De Palencia PF (2010) Naturally occurring 2-substituted (1, 3)-β-D-glucan producing Lactobacillus suebicus and Pediococcus parvulus strains with potential utility in the production of functional foods. Bioresour Technol 101:9254–9263

    Article  CAS  PubMed  Google Scholar 

  • García-Ruiz A, de Llano DG, Esteban-Fernández A, Requena T, Bartolome B, Moreno-Arribas MV (2014) Assessment of probiotic properties in lactic acid bacteria isolated from wine. Food Microbiol 44:220–225

    Article  PubMed  CAS  Google Scholar 

  • Gerritsen J, Smidt H, Rijkers GT, de Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir-Wijnkoop I, Walker C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull: Funct Foods 7:1–19

    Google Scholar 

  • Gindreau E, Walling E, Lonvaud-Funel A (2001) Direct polymerase chain reaction detection of ropy Pediococcus damnosus strains in wine. J Appl Microbiol 90:535–542. doi:10.1046/J.1365-2672.2001.01277

    Article  CAS  PubMed  Google Scholar 

  • Hassan A, Ipsen R, Janzen T, Qvist K (2003) Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides. J Dairy Sci 86:1632–1638

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Cantabrana C, López P, Gueimonde M, de los Reyes-Gavilán CG, Suñarez A, Margolles A, Ruas-Madiedo P (2012) Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and bifidobacteria. Probiotics Antimicrob Protein 4:227–237

    Article  CAS  Google Scholar 

  • Hidalgo-Cantabrana C, Sánchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P (2014) Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol 80:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 8:506–514

    Article  Google Scholar 

  • Hongpattarakere T, Cherntong N, Wichienchot S, Kolida S, Rastall RA (2012) In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydr Polym 87:846–852

    Article  CAS  Google Scholar 

  • Islam ST, Lam JS (2013) Wzx flippase-mediated membrane translocation of sugar polymer precursors in bacteria. Environ Microbiol 15:1001–1015

    Article  CAS  PubMed  Google Scholar 

  • Jolly L, Vincent SJ, Duboc P, Neeser J-R (2002) Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82:367–374

    Article  CAS  PubMed  Google Scholar 

  • Katina K, Maina NH, Juvonen R, Flander L, Johansson L, Virkki L, Tenkanen M, Laitila A (2009) In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26:734–743

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa H, Itoh T, Tamioaka Y, Mizugaki M, Yamaguchi T (1996) Induction of IFN-c and IL-1a production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int J Food Microbiol 31:99–106

    Article  CAS  PubMed  Google Scholar 

  • Kitazawa H, Harata T, Uemura J, Saito T, Kaneko T, Itoh T (1998) Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus. Int J Food Microbiol 40:169–175

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Vaughan EE (2009) Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, van Kranenburg R, Tuinier R, Boels IC, Zoon P, Looijesteijn E, Hugenholtz J, de Vos WM (1999) Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties? Antonie Van Leeuwenhoek 76:357–365

    Article  CAS  PubMed  Google Scholar 

  • Lahtinen S, Ouwehand AC, Salminen S, von Wright A (2011) Lactic acid bacteria: microbiological and functional aspects. CRC Press, Fourth Edition

    Google Scholar 

  • Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:597–625

    Article  CAS  PubMed  Google Scholar 

  • Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrêne Y, Vanderleyden J, De Keersmaecker SC (2009) Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol 75:3554–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker SC (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184

    Article  CAS  PubMed  Google Scholar 

  • Lebeer S, Claes IJ, Verhoeven TL, Vanderleyden J, De Keersmaecker SC (2011) Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol 4:368–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerm E, Engelbrecht L, Du Toit M (2010) Malolactic fermentation: the ABC’s of MLF. South African J Enol Vit 31:186–212

    CAS  Google Scholar 

  • Lindström C, Xu J, Öste R, Holst O, Molin G (2013) Oral administration of live exopolysaccharide-producing Pediococcus parvulus, but not purified exopolysaccharide, suppressed enterobacteriaceae without affecting bacterial diversity in ceca of mice. Appl Environ Microbiol 79:5030–5037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu C, Tseng K, Chiang S, Lee B, Hsu W, Pan T (2011) Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J Sci Food Agric 91:2284–2291

    CAS  PubMed  Google Scholar 

  • London LE, Chaurin V, Auty MA, Fenelon MA, Fitzgerald GF, Ross RP, Stanton C (2015) Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide-producing strain, positively influences the techno-functional properties of yoghurt. Int Dairy J 40:33–38

    Article  Google Scholar 

  • Lonvaud-Funel A (1999) Lactic acid bacteria in the quality improvement and depreciation of wine. Lact. Acid Bact Genet Metab Appl. Springer:317–331

  • Lonvaud-Funel A, Joyeux A (1988) Une altération bactérienne des vins: la «maladie des vins filants». Sci Aliments 8:33–49

  • Looijesteijn PJ, Boels IC, Kleerebezem M, Hugenholtz J (1999) Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl Environ Microbiol 65:5003–5008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Looijesteijn PJ, Trapet L, de Vries E, Abee T, Hugenholtz J (2001) Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol 64:71–80

    Article  CAS  PubMed  Google Scholar 

  • Macedo M, Lacroix C, Gardner N, Champagne C (2002) Effect of medium supplementation on exopolysaccharide production by Lactobacillus rhamnosus RW-9595M in whey permeate. Int Dairy J 12:419–426

    Article  CAS  Google Scholar 

  • Maeda H, Zhu X, Suzuki S, Suzuki K, Kitamura S (2004a) Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2BT. J Agric Food Chem 52:5533–5538

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Zhu X, Omura K, Suzuki S, Kitamura S (2004b) Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors 22:197–200

    Article  CAS  PubMed  Google Scholar 

  • Maitre M, Weidmann S, Dubois-Brissonnet F, David V, Covès J, Guzzo J (2014) Adaptation of the wine bacterium Oenococcus oeni to ethanol stress: role of the small heat shock protein Lo18 in membrane integrity. Appl Environ Microbiol 80:2973–2980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marshall VM, Rawson H (1999) Effects of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. Int J Food Sci Technol 34:137–143

    Article  CAS  Google Scholar 

  • Matsuzaki C, Kamishima K, Matsumoto K, Koga H, Katayama T, Yamamoto K, Hisa K (2014) Immunomodulating activity of exopolysaccharide-producing Leuconostoc mesenteroides strain NTM048 from green peas. J Appl Microbiol 116:980–989

    Article  CAS  PubMed  Google Scholar 

  • Nakajima H, Suzuki Y, Hirota T (1992) Cholesterol lowering activity of ropy fermented milk. J Food Sci 57:1327–1329

    Article  CAS  Google Scholar 

  • Nierop Groot MN, Kleerebezem M (2007) Mutational analysis of the Lactococcus lactis NIZO B40 exopolysaccharide (EPS) gene cluster: EPS biosynthesis correlates with unphosphorylated EpsB. J Appl Microbiol 103:2645–2656

    Article  CAS  PubMed  Google Scholar 

  • Nikolic M, López P, Strahinic I, Suárez A, Kojic M, Fernández-García M, Topisirovic L, Golic N, Ruas-Madiedo P (2012) Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int J Food Microbiol 158:155–162

    Article  CAS  PubMed  Google Scholar 

  • Nishimura J (2014) Exopolysaccharides produced from Lactobacillus delbrueckii subsp. bulgaricus. Adv Microbiol 4:1017–1020

    Article  CAS  Google Scholar 

  • Notararigo S, de las Casas-Engel M, de Palencia ,PF, Corbí AL, López P (2014) Immunomodulation of human macrophages and myeloid cells by 2-substituted (1–3)-β-d-glucan from P. parvulus 2.6. Carbohydr Polym 112:109–113

    Article  CAS  PubMed  Google Scholar 

  • Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor E, Barrett E, Fitzgerald G, Hill C, Stanton C, Ross R (2005) Production of vitamins, exopolysaccharides and bacteriocins by probiotic bacteria. Probiotic Dairy Prod:167–194

  • Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remus DM, van Kranenburg R, van Swam II, Taverne N, Bongers RS, Wels M, Wells JM, Bron PA, Kleerebezem M (2012) Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microb Cell Factories 11:149

    Article  CAS  Google Scholar 

  • Rieu A, Aoudia N, Jego G, Chluba J, Yousfi N, Briandet R, Deschamps J, Gasquet B, Monedero V, Garrido C, Guzzo J (2014) The biofilm mode of life boosts the anti-inflammatory properties of Lactobacillus. Cell Microbiol 16:1836–1853

    Article  CAS  PubMed  Google Scholar 

  • Rozen R, Steinberg D, Bachrach G (2004) Streptococcus mutans fructosyltransferase interactions with glucans. FEMS Microbiol Lett 232:39–43

    Article  CAS  PubMed  Google Scholar 

  • Ruas-Madiedo P, de los Reyes-Gavilan CG (2005) Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88:843–856

    Article  CAS  PubMed  Google Scholar 

  • Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171

    Article  CAS  Google Scholar 

  • Ruas-Madiedo P, Gueimonde M, De Los Reyes-Gavilan C, Salminen S (2006a) Short communication: effect of exopolysaccharide isolated from “viili” on the adhesion of probiotics and pathogens to intestinal mucus. J Dairy Sci 89:2355–2358

    Article  CAS  PubMed  Google Scholar 

  • Ruas-Madiedo P, Gueimonde M, Margolles A, de los Losreyes-Gavilán CG, Salminen S (2006b) Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot 69:2011–2015

    CAS  PubMed  Google Scholar 

  • Ruas-Madiedo P, Abraham A, Mozzi F, Mayo B, López P, Pérez-Martínez G (2008) Functionality of exopolysaccharides produced by lactic acid bacteria. Mol Asp Lact Acid Bact Tradit New Appl:137–166

  • Russo P, López P, Capozzi V, Fernández de Palencia P, Dueñas MT, Spano G, Fiocco D (2012) Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int J Mol Sci 13:6026–6039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D, Pardo MA, López P, Spano G (2015) Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 1–12

  • Ryan P, Ross R, Fitzgerald G, Caplice N, Stanton C (2015) Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct 6:679–693. doi:10.1039/C4fo00529e

    Article  CAS  PubMed  Google Scholar 

  • Salazar N, Gueimonde M, De Los Reyes-Gavilán CG, Ruas-Madiedo P (2015) Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Crit Rev Food Sci Nutr . doi:10.1080/10408398.2013.77072800–00

    PubMed  Google Scholar 

  • Schwab C, Mastrangelo M, Corsetti A, Gänzle M (2008) Formation of oligosaccharides and polysaccharides by Lactobacillus reuteri LTH5448 and Weissella cibaria 10M in sorghum sourdoughs. Cereal Chem 85:679–684

    Article  CAS  Google Scholar 

  • Siezen RJ, Tzeneva VA, Castioni A, Wels M, Phan HT, Rademaker JL, Starrenburg MJ, Kleerebezem M, Molenaar D, Van Hylckama-Vlieg JE (2010) Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches. Environ Microbiol 12:758–773

    Article  CAS  PubMed  Google Scholar 

  • Spano G, Massa S (2006) Environmental stress response in wine lactic acid bacteria: beyond Bacillus subtilis. Crit Rev Microbiol 32:77–86

    Article  CAS  PubMed  Google Scholar 

  • Stack HM, Kearney N, Stanton C, Fitzgerald GF, Ross RP (2010) Association of beta-glucan endogenous production with increased stress tolerance of intestinal lactobacilli. Appl Environ Microbiol 76:500–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingele F, Neeser JR, Mollet B (1996) Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J Bacteriol 178:1680–1690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tallon R, Bressollier P, Urdaci MC (2003) Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res Microbiol 154:705–712

    Article  CAS  PubMed  Google Scholar 

  • Torino MI, Font De Valdez G, Mozzi F (2015) Biopolymers from lactic acid bacteria novel applications in foods and beverages. Front Microbiol 6:834. doi:10.3389/Fmicb.2015.00834

    PubMed  PubMed Central  Google Scholar 

  • Tsuda H (2013) Exopolysaccharides of lactic acid bacteria for food and colon health applications. Lactic acid bacteria–R & D for food, health and livestock purposes. pp 515–538

  • Tsuda H, Miyamoto T (2010) Production of exopolysaccharide by Lactobacillus plantarum and the prebiotic activity of the exopolysaccharide. Food Sci Technol Res 16:87–92

    Article  CAS  Google Scholar 

  • Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131

    Article  PubMed  Google Scholar 

  • van Kranenburg R, Marugg JD, Van Swam II, Willem NJ, De Vos WM (1997) Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24:387–397

    Article  PubMed  Google Scholar 

  • van Kranenburg R, Boels IC, Kleerebezem M, de Vos WM (1999a) Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Curr Opin Biotechnol 10:498–504

    Article  PubMed  Google Scholar 

  • van Kranenburg R, Vos HR, van Swam II, Kleerebezem M, de Vos WM (1999b) Functional analysis of glycosyltransferase genes from Lactococcus lactis and other gram-positive cocci: complementation, expression and diversity. J Bacteriol 181:6347–6353

    PubMed  PubMed Central  Google Scholar 

  • Velasco S, Årsköld E, Paese M, Grage H, Irastorza A, Rådström P, Van Niel E (2006) Environmental factors influencing growth of and exopolysaccharide formation by Pediococcus parvulus 2.6. Int J Food Microbiol 111:252–258

    Article  CAS  PubMed  Google Scholar 

  • Vinderola G, Perdigón G, Duarte J, Farnworth E, Matar C (2006) Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine 36:254–260

    Article  CAS  PubMed  Google Scholar 

  • Walling E, Dols-Lafargue M, Lonvaud-Funel A (2005) Glucose fermentation kinetics and exopolysaccharide production by ropy Pediococcus damnosus IOEB8801. Food Microbiol 22:71–78

    Article  CAS  Google Scholar 

  • Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21:269–274

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Wu K, Wang F, Liang X, Liu Q, Li G, Li Q (2014) Effect of exopolysaccharides from lactic acid bacteria on the texture and microstructure of buffalo yoghurt. Int Dairy J 34:252–256

    Article  CAS  Google Scholar 

  • Yasuda E, Serata M, Sako T (2008) Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharides. Appl Environ Microbiol 74:4746–4755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yother J (2011) Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu Rev Microbiol 65:563–581

    Article  CAS  PubMed  Google Scholar 

  • Zannini E, Waters DM, Coffey A, Arendt EK (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100:1121–1135

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Spano.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caggianiello, G., Kleerebezem, M. & Spano, G. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 100, 3877–3886 (2016). https://doi.org/10.1007/s00253-016-7471-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7471-2

Keywords

Navigation