Skip to main content
Log in

Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Thraustochytrids have been applied for industrial production of the omega-3 fatty acid docosahexaenoic (DHA) since the 1990s. During more than 20 years of research on this group of marine, heterotrophic microorganisms, considerable increases in DHA productivities have been obtained by process and medium optimization. Strains of thraustochytrids also produce high levels of squalene and carotenoids, two other commercially interesting compounds with a rapidly growing market potential, but where yet few studies on process optimization have been reported. Thraustochytrids use two pathways for fatty acid synthesis. The saturated fatty acids are produced by the standard fatty acid synthesis, while DHA is synthesized by a polyketide synthase. However, fundamental knowledge about the relationship between the two pathways is still lacking. In the present review, we extract main findings from the high number of reports on process optimization for DHA production and interpret these in the light of the current knowledge of DHA synthesis in thraustochytrids and lipid accumulation in oleaginous microorganisms in general. We also summarize published reports on squalene and carotenoid production and review the current status on strain improvement, which has been hampered by the yet very few published genome sequences and the lack of tools for gene transfer to the organisms. As more sequences now are becoming available, targets for strain improvement can be identified and open for a system-level metabolic engineering for improved productivities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe E, Ikeda K, Nutahara E, Hayashi M, Yamashita A, Taguchi R, Doi K, Honda D, Okino N, Ito M (2014) Novel lysophospholipid acyltransferase PLAT1 of Aurantiochytrium limacinum F26-b responsible for generation of palmitate-docosahexaenoate-phosphatidylcholine and phosphatidylethanolamine. PLoS One 9:e102377

    Article  PubMed  PubMed Central  Google Scholar 

  • Aki T, Hachida K, Yoshinaga M, Katai Y, Yamasaki T, Kawamoto S, Kakizono T, Maoka T, Shigeta S, Suzuki O, Ono K (2003) Thraustochytrid as a potential source of carotenoids. J Am Oil Chem Soc 80:789–794

    Article  CAS  Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Armenta RE, Burja A, Radianingtyas H, Barrow CJ (2006) Critical assessment of various techniques for the extraction of carotenoids and co-enzyme Q 10 from the thraustochytrid strain ONC-T18. J Agric Food Chem 54:9752–9758

    Article  CAS  PubMed  Google Scholar 

  • Bailey RB, DiMasi D, Hansen JM, Mirrasoul PJ, Ruecker CM, Veeder GT, Kaneko T, Barclay WR (2003) Enhanced production of lipids containing polyunsaturated fatty acids by very high density cultures of eukaryotic microbes in fermentors. US Patent 6:607,900

    Google Scholar 

  • Bakes MJ, Nichols PD (1995) Lipid, fatty acid and squalene composition of liver oil from six species of deep-sea sharks collected in southern Australian waters. Comp Biochem Physiol B 110:267–275

    Article  Google Scholar 

  • Barclay W, Weaver C, Metz C, Hansen J (2010) Development of a docosahexaenoic acid production technology using Schizochytrium: historical perspective and update. In: Ratledge C, Cohen Z (eds) Single cell oils: microbial and algal oils, 2nd edn. AOCS Press, Urbana, pp. 75–96

    Chapter  Google Scholar 

  • Bayne ACV, Boltz D, Owen C, Betz J, Maia G, Azadi P, Archer-Hartmann S, Zirkle R, Lippmeier JC (2013) Vaccination against influenza with recombinant hemagglutinin expressed by Schizochytrium sp. confers protective immunity. PLoS One 8:e61790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman J, Zorrilla-Lopez U, Farre G, Zhu CF, Sandmann G, Twyman RM, Capell T, Christou P (2015) Nutritionally important carotenoids as consumer products. Phytochem Rev 14:727–743

    Article  CAS  Google Scholar 

  • Burja AM, Radianingtyas H, Windust A, Barrow CJ (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72:1161–1169

    Article  CAS  PubMed  Google Scholar 

  • Carmona ML, Naganuma T, Yamaoka Y (2003) Identification by HPLC-MS of carotenoids of the Thraustochytrium CHN-1 strain isolated from the Seto Inland Sea. Biosci Biotechnol Biochem 67:884–888

    Article  CAS  PubMed  Google Scholar 

  • Chaisawang M, Verduyn C, Chauvatcharin S, Suphantharika M (2012) Metabolic networks and bioenergetics of Aurantiochytrium sp. B-072 during storage lipids formation. Braz J Microbiol 43:1192–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang G, Gao N, Tian G, Wu Q, Chang M, Wang X (2013a) Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour Technol 142:400–406

    Article  CAS  PubMed  Google Scholar 

  • Chang G, Luo Z, Gu S, Wu Q, Chang M, Wang X (2013b) Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresour Technol 142:255–260

    Article  CAS  PubMed  Google Scholar 

  • Chang G, Wu J, Jiang C, Tian G, Wu Q, Chang M, Wang X (2014) The relationship of oxygen uptake rate and kLa with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31. Bioresour Technol 152:234–240

    Article  CAS  PubMed  Google Scholar 

  • Chaung KC, Chu CY, Su YM, Chen YM (2012) Effect of culture conditions on growth, lipid content, and fatty acid composition of Aurantiochytrium mangrovei strain BL10. AMB Express 2:42

  • Cheng RB, Lin XZ, Wang ZK, Yang SJ, Rong H, Ma Y (2011) Establishment of a transgene expression system for the marine microalga Schizochytrium by 18S rDNA-targeted homologous recombination. World J Microbiol Biotechnol 27:737–741

    Article  CAS  Google Scholar 

  • Cheng R, Ma R, Li K, Rong H, Lin X, Wang Z, Yang S, Ma Y (2012) Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol Res 167:179–186

    Article  CAS  PubMed  Google Scholar 

  • Chodchoey K, Verduyn C (2012) Growth, fatty acid profile in major lipid classes and lipid fluidity of Aurantiochytrium mangrovei SK-02 as a function of growth temperature. Braz J Microbiol 43:187–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutzu R, Coi A, Rosso F, Bardi L, Ciani M, Budroni M, Zara G, Zara S, Mannazzu I (2013) From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol 29:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Dulermo T, Lazar Z, Dulermo R, Rakicka M, Haddouche R, Nicaud JM (2015) Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis. Biochim Biophys Acta 1851:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol 102:88–93

    Article  CAS  PubMed  Google Scholar 

  • Fan KW, Jiang Y, Faan YW, Chen F (2007) Lipid characterization of mangrove thraustochytrid — Schizochytrium mangrovei. J Agric Food Chem 55:2906–2910

    Article  CAS  PubMed  Google Scholar 

  • FAO (2014) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome, 2014. E-ISBN 978–92-5-108276-8 (PDF)

  • Ganuza E, Izquierdo MS (2007) Lipid accumulation in Schizochytrium G13/2S produced in continuous culture. Appl Microbiol Biotechnol 76:985–990

    Article  CAS  PubMed  Google Scholar 

  • Garay LA, Boundy-Mills KL, German JB (2014) Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. J Agric Food Chem 62:2709–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Vedrenne AE, Groner M, Page-Karjian A, Siegmund GF, Singhal S, Sziklay J, Roberts S (2013) Development of genomic resources for a thraustochytrid pathogen and investigation of temperature influences on gene expression. PLoS One 8:e74196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassel S, Schewe H, Schmidt I, Schrader J, Sandmann G (2013) Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol Lett 35:565–569

    Article  CAS  PubMed  Google Scholar 

  • Ghimire GP, Thuan NH, Koirala N, Sohng JK (2016) Advances in biochemistry and microbial production of squalene and its derivatives. J Microbiol Biotechnol 26:441–451

  • Goold H, Beisson F, Peltier G, Li-Beisson Y (2015) Microalgal lipid droplets: composition, diversity, biogenesis and functions. Plant Cell Rep 34:545–555

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30:1733–1745

    Article  CAS  PubMed  Google Scholar 

  • Hauvermale A, Kuner J, Rosenzweig B, Guerra D, Diltz S, Metz JG (2006) Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids 41:739–747

    Article  CAS  PubMed  Google Scholar 

  • Hoang MH, Ha NC, Thom le T, Tam LT, Anh HT, Thu NT, Hong DD (2014) Extraction of squalene as value-added product from the residual biomass of Schizochytrium mangrovei PQ6 during biodiesel producing process. J Biosci Bioeng 118:632–639

    Article  CAS  PubMed  Google Scholar 

  • Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihar T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46:637–647

    Article  CAS  PubMed  Google Scholar 

  • Hong WK, Heo SY, Oh BR, Kim CH, Sohn JH, Yang JW, Kondo A, Seo JW (2013a) A transgene expression system for the marine microalgae Aurantiochytrium sp. KRS101 using a mutant allele of the gene encoding ribosomal protein L44 as a selectable transformation marker for cycloheximide resistance. Bioprocess Biosyst Eng 36:1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Hong WK, Heo SY, Park HM, Kim CH, Sohn JH, Kondo A, Seo JW (2013b) Characterization of a squalene synthase from the thraustochytrid microalga Aurantiochytrium sp. KRS101. J Microbiol Biotechnol 23:759–765

    Article  CAS  PubMed  Google Scholar 

  • Huang ZR, Lin YK, Fang YE (2009) Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules 14:540–554

    Article  CAS  PubMed  Google Scholar 

  • Huang TY, Lu WC, Chu IM (2012) A fermentation strategy for producing docosahexaenoic acid in Aurantiochytrium limacinum SR21 and increasing C22:6 proportions in total fatty acid. Bioresour Technol 123:8–14

    Article  CAS  PubMed  Google Scholar 

  • Jakobsen AN, Aasen IM, Josefsen KD, Strøm AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation and O2 limitation. Appl Microbiol Biotechnol 80:297–306

    Article  CAS  PubMed  Google Scholar 

  • Janthanomsuk P, Verduyn C, Chauvatcharin S (2015) Improved docosahexaenoic acid production in Aurantiochytrium by glucose limited pH-auxostat fed-batch cultivation. Bioresour Technol 196:592–599

    Article  CAS  PubMed  Google Scholar 

  • Ji XJ, Mo KQ, Ren LJ, Li GL, Huang JZ, Huang H (2015) Genome sequence of Schizochytrium sp. CCTCC M209059, an effective producer of docosahexaenoic acid-rich lipids. Genome Announc 3:e00819–e00815

    Article  PubMed  PubMed Central  Google Scholar 

  • Karas BJ, Diner RE, Lefebvre SC, McQuaid J, Phillips AP, Noddings CM, Brunson JK, Valas RE, Deerinck TJ, Jablanovic J, Gillard JT, Beeri K, Ellisman MH, Glass JI, Hutchison CA, Smith HO, Venter JC, Allen AE, Dupont CL, Weyman PD (2015) Designer diatom episomes delivered by bacterial conjugation. Nat Commun 6:692

    Article  Google Scholar 

  • Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM (2011) Thraustochytrid Aurantiochytrium sp. 18 W-13a accumulates high amounts of squalene. Biosci Biotechnol Biochem 75:2246–2248

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Lee YC, Cho DH, Lee HU, Huh YS, Kim GJ, Kim HS (2014) A simple and non-invasive method for nuclear transformation of intact-walled Chlamydomonas reinhardtii. PLoS One 9:e101018

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Liu R, Chang G, Li X, Chang M, Liu Y, Jin Q, Wang X (2015) A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour Technol 177:51–57

    Article  CAS  PubMed  Google Scholar 

  • Lippmeier JC, Crawford KS, Owen CB, Rivas AA, Metz JG, Apt KE (2009) Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids 44:621–630

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Tan Y, Cui G, Feng Y, Cui Q, Song X (2015) Transcriptome and gene expression analysis of DHA producer Aurantiochytrium under low temperature conditions. Sci Report 5:14446

    Article  CAS  Google Scholar 

  • Matsuda T, Sakaguchi K, Kobayashi T, Abe E, Kurano N, Sato A, Okita Y, Sugimoto S, Hama Y, Hayashi M, Okino N, Ito M (2011) Molecular cloning of a Pinguiochrysis pyriformis oleate-specific microsomal delta12-fatty acid desaturase and functional analysis in yeasts and thraustochytrids. J Biochem 150:375–383

    Article  CAS  PubMed  Google Scholar 

  • Matsuda T, Sakaguchi K, Hamaguchi R, Kobayashi T, Abe E, Hama Y, Hayashi M, Honda D, Okita Y, Sugimoto S, Okino N, Ito M (2012) Analysis of Δ12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in T. aureum ATCC 34304. J Lipid Res 53:1210–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metz JG, Roessler P, Facciotti D, Levering C, Dittrich F, Lassner M, Valentine R, Lardizabal K, Domergue F, Yamada A, Yazawa K, Knauf V, Browse J (2001) Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 293:290–293

    Article  CAS  PubMed  Google Scholar 

  • Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar Drugs 11:4662–4697

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM (2012) Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18 W-13a for squalene production. Bioresour Technol 109:287–291

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa A, Kokubun Y, Matsuura H, Yonezawa N, Kose R, Yoshida M, Tanabe Y, Kusuda E, Van Thang D, Ueda M, Honda D, Mahakhant A, Kaya K, Watanabe MM (2014) TLC screening of thraustochytrid strains for squalene production. J Appl Phycol 26:29–41

    Article  CAS  Google Scholar 

  • Olsen Y (2011) Resources for fish feed in future mariculture. Aquac Environ Int 1:187–200

    Article  Google Scholar 

  • Popa O, Babeanu NE, Popa I, Nita S, Dinu-Parvu CE (2015) Methods for obtaining and determination of squalene from natural sources. Biomed Res Int 2015:367202

    Article  PubMed  PubMed Central  Google Scholar 

  • Qu L, Ji XJ, Ren LJ, Nie ZK, Feng Y, Wu WJ, Ouyang PK, Huang H (2011) Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient. Lett Appl Microbiol 52:22–27

    Article  CAS  PubMed  Google Scholar 

  • Qu L, Ren LJ, Li J, Sun GN, Ji XJ, Nie ZK, Huang H (2013a) Biomass composition, lipid characterization, and metabolic profile analysis of the fed-batch fermentation process of two different docosahexaenoic acid producing Schizochytrium sp. strains. Appl Biochem Biotechnol 171:1865–1876

    Article  CAS  PubMed  Google Scholar 

  • Qu L, Ren LJ, Sun GN, Ji XJ, Nie ZK, Huang H (2013b) Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioprocess Biosyst Eng 36:1905–1912

    Article  CAS  PubMed  Google Scholar 

  • Quilodran B, Hinzpeter I, Hormazabal E, Quiroz A, Shene C (2010) Docosahexaenoic acid (C22:6n-3, DHA) and astaxanthin production by Thraustochytriidae sp. AS4-A1, a native strain with high similitude to Ulkenia sp.: evaluation of liquid residues from food industry as nutrient sources. Enzym Microb Technol 47:24–30

    Article  CAS  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (thraustochytrids and labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10:631–640

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2002) Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc T 30:1047–1050

    Article  CAS  Google Scholar 

  • Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie 86:807–815

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (2014) The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems. Biotechnol Lett 36:1557–1568

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Article  CAS  PubMed  Google Scholar 

  • Reddy LH, Couvreur P (2009) Squalene: a natural triterpene for use in disease management and therapy. Adv Drug Deliv Rev 61:1412–1426

    Article  CAS  PubMed  Google Scholar 

  • Ren LJ, Huang H, Xiao AH, Lian M, Jin LJ, Ji XJ (2009) Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess Biosyst Eng 32:837–843

    Article  CAS  PubMed  Google Scholar 

  • Ren LJ, Ji XJ, Huang H, Qu L, Feng Y, Tong QQ, Ouyang PK (2010) Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl Microbiol Biotechnol 87:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Ren LJ, Feng Y, Li J, Qu L, Huang H (2013) Impact of phosphate concentration on docosahexaenoic acid production and related enzyme activities in fermentation of Schizochytrium sp. Bioprocess Biosyst Eng 36:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Ren LJ, Sun GN, Ji XJ, Hu XC, Huang H (2014a) Compositional shift in lipid fractions during lipid accumulation and turnover in Schizochytrium sp. Bioresour Technol 157:107–113

    Article  CAS  PubMed  Google Scholar 

  • Ren LJ, Sun LN, Zhuang XY, Qu L, Ji XJ, Huang H (2014b) Regulation of docosahexaenoic acid production by Schizochytrium sp.: effect of nitrogen addition. Bioprocess Biosyst Eng 37:865–872

    Article  CAS  PubMed  Google Scholar 

  • Rubin E, Tanguy A, Perrigault M, Pales Espinosa E, Allam B (2014) Characterization of the transcriptome and temperature-induced differential gene expression in QPX, the thraustochytrid parasite of hard clams. BMC Genomics 15:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi K, Matsuda T, Kobayashi T, Ohara J, Hamaguchi R, Abe E, Nagano N, Hayashi M, Ueda M, Honda D, Okita Y, Taoka Y, Sugimoto S, Okino N, Ito M (2012) Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for thraustochytrids. Appl Environ Microbiol 78:3193–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Liu Y, Li LS, Wang GY (2014) Ecological dynamics and biotechnological implications of thraustochytrids from marine habitats. Appl Microbiol Biotechnol 98:5789–5805

    Article  CAS  PubMed  Google Scholar 

  • Song X, Tan Y, Liu Y, Zhang J, Liu G, Feng Y, Cui Q (2013) Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116. J Agric Food Chem 61:9876–9881

    Article  CAS  PubMed  Google Scholar 

  • Suen YL, Tang H, Huang J, Chen F (2014) Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J Agric Food Chem 62:12392–12398

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Ren L, Zhuang X, Ji X, Yan J, Huang H (2014) Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresour Technol 159:199–206

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Chen H, Zang X, Hou P, Zhou B, Liu Y, Wu F, Cao X, Zhang X (2015) Application of the cre/loxP site-specific recombination system for gene transformation in Aurantiochytrium limacinum. Molecules 20:10110–10121

    Article  CAS  PubMed  Google Scholar 

  • Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2009) Influences of culture temperature on the growth, lipid content and fatty acid composition of Aurantiochytrium sp. strain mh0186. Mar Biotechnol 11:368–374

    Article  CAS  PubMed  Google Scholar 

  • Unagul P, Assantachai C, Phadungruengluij S, Suphantharika M, Verduyn C (2005) Properties of the docosahexaenoic acid-producer Schizochytrium mangrovei Sk-02: effects of glucose, temperature and salinity and their interaction. Bot Mar 48:387–394

    Article  CAS  Google Scholar 

  • Valentine RC, Valentine DL (2004) Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res 43:383–400

    Article  CAS  PubMed  Google Scholar 

  • Wang CW (2015) Lipid droplet dynamics in budding yeast. Cell Mol Life Sci 72:2677–2695

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Wang G (2015) Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl Microbiol Biotechnol 99:8363–8375

    Article  CAS  PubMed  Google Scholar 

  • Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74:1431–1434

    Article  CAS  Google Scholar 

  • Yamasaki T, Aki T, Shinozaki M, Taguchi M, Kawamoto S, Ono K (2006) Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. J Biosci Bioeng 102:323–327

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Cheng R, Lin X, You S, Li K, Rong H, Ma Y (2013) Overexpression of acetyl-CoA synthetase increased the biomass and fatty acid proportion in microalga Schizochytrium. Appl Microbiol Biotechnol 97:1933–1939

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Qiao W, Yu X, Ji X, Huang H, Collier JL, Liu L (2015) Reconstruction and analysis of the genome-scale metabolic model of Schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genomics 16:799

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48:199–211

    Article  CAS  Google Scholar 

  • Yokoyama R, Salleh B, Honda D (2007) Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Ulkenia and erection of Botryochytrium, Parietichytrium, and Sicyoidochytrium gen. nov. Mycoscience 48:329–341

    Article  CAS  Google Scholar 

  • Zeng Y, Ji XJ, Lian M, Ren LJ, Jin LJ, Ouyang PK, Huang H (2011) Development of a temperature shift strategy for efficient docosahexaenoic acid production by a marine fungoid protist, Schizochytrium sp. HX-308. Appl Biochem Biotechnol 164:249–255

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Marie Aasen.

Ethics declarations

The authors confirm that ethical principles have been followed in the manuscript preparation.

Funding

The work on thraustochytrids and microbial oil production at SINTEF and NTNU is funded by grants from The Research Council of Norway.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aasen, I.M., Ertesvåg, H., Heggeset, T.M.B. et al. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl Microbiol Biotechnol 100, 4309–4321 (2016). https://doi.org/10.1007/s00253-016-7498-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7498-4

Keywords

Navigation