Skip to main content
Log in

Dynamics of the diversity and structure of the overall and nitrifying microbial community in activated sludge along gradient copper exposures

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Diversity and composition of the microbial community, especially the nitrifiers, are essential to the treatment efficiency of wastewater in activated sludge systems. Heavy metals commonly present in the wastewater influent such as Cu can alter the community structure of nitrifiers and lower their activity. However, the dynamics of microbial community along a gradient of metal exposure have largely been unexplored, partially due to the limitations in traditional molecular methods. This study explored the dynamics regarding the diversity and community structures of overall and nitrifying microbial communities in activated sludge under intermittent Cu gradient loadings using Illumina sequencing. We created a new local nitrifying bacterial database for sequence BLAST searches. High Cu loadings (>10.9 mg/L) impoverished microbial diversity and altered the microbial community. Overall, Proteobacteria was the predominant phylum in the activated sludge system, in which Zoogloea, Thauera, and Dechloromonas (genera within the Rhodocyclaceae family of the Beta-proteobacteria class) were the dominant genera in the presence of Cu. The abundance of unclassified bacteria at the phylum level increased substantially with increasing Cu loadings. Nitrosomonas and Nitrospira were the predominant nitrifiers. The nitrifying bacterial community changed through increasing abundance and shifting to Cu-tolerant species to reduce the toxic effects of Cu. Our local nitrifying bacterial database helped to improve the resolution of bacterial identification. Our results provide insights into the dynamics of microbial community in response to various metal concentrations in activated sludge systems and improve our understanding regarding the effect of metals on wastewater treatment efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen B, Kon M, BarYam Y (2009) A new phylogenetic diversity measure generalizing the Shannon index and its application to phyllostomid bats. Am Nat NLM 174(2):236–243. doi:10.1086/600101

    Article  Google Scholar 

  • APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st ed., Washington, DC

  • Bai Y, Sun Q, Wen D, Tang X (2012) Abundance of ammonia-oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems. FEMS Microbiol Ecol 80(2):323–330. doi:10.1111/j.1574-6941.2012.01296.x

    Article  CAS  PubMed  Google Scholar 

  • Cabrero A, Fernandez S, Mirada F, Garcia J (1998) Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Res 32(5):1355–1362. doi:10.1016/S0043-1354(97)00366-7

    Article  CAS  Google Scholar 

  • Chen J, Tang Y, Li Y, Nie Y, Hou L, Li X, Wu X (2014) Impacts of different nanoparticles on functional bacterial community in activated sludge. Chemosphere 104:141–148. doi:10.1016/j.chemosphere.2013.10.082

    Article  CAS  PubMed  Google Scholar 

  • Chihomvu P, Stegmann P, Pillay M (2015) Characterization and structure prediction of partial length protein sequences of pcoA, pcoR and chrB genes from heavy metal resistant bacteria from the Klip River, South Africa. Int J Mol Sci 16(4):7352–7374. doi:10.3390/ijms16047352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2003) Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl Environ Microbiol 69(12):7354–7363. doi:10.1128/AEM.69.12.7354-7363.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degnan PH, Ochman H (2012) Illumina-based analysis of microbial community diversity. ISME J 6(1):183–194. doi:10.1038/ismej.2011.74

    Article  CAS  PubMed  Google Scholar 

  • Demanou J, Sharma S, Weber A, Wilke BM, Njine T, Monkiedje A, Munch JC, Schloter M (2006) Shifts in microbial community functions and nitrifying communities as a result of combined application of copper and mefenoxam. FEMS Microbiol Lett 260:55–62

    Article  CAS  PubMed  Google Scholar 

  • Dupont CL, Grass G, Rensing C (2011) Copper toxicity and the origin of bacterial resistance—new insights and applications. Metallomics 3(11):1109–1118. doi:10.1039/C1MT00107H (Minireview)

    Article  CAS  PubMed  Google Scholar 

  • Figuerola EL, Erijman L (2010) Diversity of nitrifying bacteria in a full-scale petroleum refinery wastewater treatment plant experiencing unstable nitrification. J Hazard Mater 181(1):281–288. doi:10.1016/j.jhazmat.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  • Fuerst JA (1995) The Planctomycetes: emerging models for microbial ecology; evolution and cell biology. Microbiology 141(7):1493–1506

    Article  CAS  PubMed  Google Scholar 

  • Fukushima T, Whang LM, Lee YC, Putri DW, Chen PC, Wu YJ (2014) Transcriptional responses of bacterial amoA gene to dimethyl sulfide inhibition in complex microbial communities. Bioresour Technol 165:137–144. doi:10.1016/j.biortech.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  • Grady CP, Daigger GT, Love NG, Filipe CDM (2011) Biological wastewater treatment, 3rd edn. Taylor & Francis, Boca Raton, US

    Google Scholar 

  • Guo F, Zhang T (2012) Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing. Water Res 46(8):2772–2782

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Chandran K, Grasso D, Smets BF (2003) Impact of metal sorption and internalization on nitrification inhibition. Environ. Sci. Technol. 37:728–734. doi:10.1016/j.watres.2012.02.039

    Article  CAS  PubMed  Google Scholar 

  • Jiang R, Sun S, Wang K, Hou Z, Li X (2013) Impacts of Cu (II) on the kinetics of nitrogen removal during the wastewater treatment process. Ecotox Environ Safe 98:54–58. doi:10.1016/j.ecoenv.2013.09.026

    Article  CAS  Google Scholar 

  • Keshri J, Mankazana J, Momba B (2015) Profile of bacterial communities in South African mine-water samples using Illumina next-generation sequencing platform. Appl Microbiol Biot 99(7):3233–3242. doi:10.1007/s00253-014-6213-6

    Article  CAS  Google Scholar 

  • Kim D, Kim KY, Ryu HD, Min KK, Lee SI (2009) Long term operation of pilot-scale biological nutrient removal process in treating municipal wastewater. Bioresour Technol 100(13):3180–3184. doi:10.1016/j.biortech.2009.01.062

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Kim TS, Yu GH, Jung JH, Park HD (2010) Bacterial community composition and diversity of a full-scale integrated fixed-film activated sludge system as investigated by pyrosequencing. J Microbiol Biotechnol 20(12):1717–1723. doi:10.4014/jmb.1007.07012

    PubMed  Google Scholar 

  • Li B, Zhang X, Guo F, Wu W, Zhang T (2013) Characterization of tetracycline resistant bacterial community in saline activated sludge using batch stress incubation with high-throughput sequencing analysis. Water Res 47(13):4207–4216. doi:10.1016/j.watres.2013.04.021

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Qu Y, Shen W, Zhang Z, Wang J, Liu Z, Li D, Li H, Zhou J (2015a) Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour Technol 179:436–443. doi:10.1016/j.biortech.2014.12.041

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Metch JW, Vejerano EP, Miller IJ, Leon EC, Marr LC, Vikesland PJ, Pruden A (2015b) Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials. Water Res 68:87–97. doi:10.1016/j.watres.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  • Martins M, Faleiro ML, Chaves S, Tenreiro R, Costa MC (2010) Effect of uranium (VI) on two sulphate-reducing bacteria cultures from a uranium mine site. Sci Total Environ 408(12):2621–2628. doi:10.1016/j.scitotenv.2010.02.032

    Article  CAS  PubMed  Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405(6783):228–233. doi:10.1038/35012234

    Article  CAS  PubMed  Google Scholar 

  • Mertoglu B, Semerci N, Guler N, Calli B, Cecen F, Saatci AM (2008) Monitoring of population shifts in an enriched nitrifying system under gradually increased cadmium loading. J Hazard Mater 160(2):495–501. doi:10.1016/j.jhazmat.2008.03.056

    Article  CAS  PubMed  Google Scholar 

  • Miao Y, Liao R, Zhang XX, Wang Y, Wang Z, Shi P, Liu B, Li A (2015) Metagenomic insights into Cr (VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater. Water Res 76:43–52. doi:10.1016/j.watres.2015.02.042

    Article  CAS  PubMed  Google Scholar 

  • Miskin IP, Farrimond P, Head IM (1999) Identification of novel bacterial lineages as active members of microbial populations in a freshwater sediment using a rapid RNA extraction procedure and RT-PCR. Microbiology 145(8):1977–1987. doi:10.1099/13500872-145-8-1977

    Article  CAS  PubMed  Google Scholar 

  • Moussa M, Hooijmans C, Lubberding H, Gijzen H, Van Loosdrecht M (2005) Modelling nitrification, heterotrophic growth and predation in activated sludge. Water Res 39(20):5080–5098. doi:10.1016/j.watres.2005.09.038

    Article  CAS  PubMed  Google Scholar 

  • Munz G, Gualtiero M, Salvadori L, Claudia B, Claudio L (2008) Process efficiency and microbial monitoring in MBR (membrane bioreactor) and CASP (conventional activated sludge process) treatment of tannery wastewater. Bioresour Technol 99(18):8559–8564. doi:10.1016/j.biortech.2008.04.006

    Article  CAS  PubMed  Google Scholar 

  • Norberg AB, Persson H (1984) Accumulation of heavy-metal ions by Zoogloea ramigera. Biotechnol Bioeng 26(3):239–246

    Article  CAS  PubMed  Google Scholar 

  • Ochoa Herrera V, León G, Banihani Q, Field JA, Sierra Alvarez R (2011) Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems. Sci Total Environ 412:380–385. doi:10.1016/j.scitotenv.2011.09.072

    Article  PubMed  Google Scholar 

  • Ouyang F, Zhai H, Ji M, Zhang H, Dong Z (2015) Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge. J Hazard Mater. doi:10.1016/j.jhazmat.2015.08.039

    Google Scholar 

  • Pamukoglu MY, Kargi F (2007) Copper (II) ion toxicity in activated sludge processes as function of operating parameters. Enzyme Microb Tech 40(5):1228–1233. doi:10.1016/j.enzmictec.2006.09.005

    Article  CAS  Google Scholar 

  • Principi P, Villa F, Bernasconi M, Zanardini E (2006) Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Res 40(1):99–106. doi:10.1016/j.watres.2005.10.028

    Article  CAS  PubMed  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microb 66(12):5368–5382. doi:10.1128/AEM.66.12.5368-5382.2000

    Article  CAS  Google Scholar 

  • Sağ Y, Kutsal T (1995) Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and comparison of biosorption characteristics. Chem Eng J and Biochem Eng J 60(1–3):181–188. doi:10.1016/0923-0467(95)03014-X

    Google Scholar 

  • Santos A, Judd S (2010) The fate of metals in wastewater treated by the activated sludge process and membrane bioreactors: a brief review. J Environ Monit 12(1):110–118. doi:10.1039/b918161j

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6(12):e27310. doi:10.1371/journal.pone.0027310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sierra Alvarez R, Hollingsworth J, Zhou MS (2007) Removal of copper in an integrated sulfate reducing bioreactor-crystallization reactor system. Environ Sci Technol 41(4):1426–1431. doi:10.1021/es062152l

    Article  CAS  PubMed  Google Scholar 

  • Stanković V, Božić D, Gorgievski M, Bogdanović G (2009) Heavy metal ions adsorption from mine waters by sawdust. Chem Ind Chem Eng Q 15(4):237–249. doi:10.2298/CICEQ0904237S

    Article  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter C, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn I, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Nikhat Z, Zhou L, Kuske CR (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75(7):2046–2056. doi:10.1128/AEM.02294-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu D, Shen Y, Ding A, Mahmood Q, Liu S, Tu Q (2013) Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge. J Hazard Mater 262:649–655. doi:10.1016/j.jhazmat.2013.09.038

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Wang J, Wang H, Chen X, Ren S, Li X, Xu Y, Zhang H, Li X (2012) Evolution of the microbial community in a full-scale printing and dyeing wastewater treatment system. Bioresour Technol 117:155–163. doi:10.1016/j.biortech.2012.04.059

    Article  CAS  PubMed  Google Scholar 

  • Yeung CH, Francis CA, Criddle CS (2013) Adaptation of nitrifying microbial biomass to nickel in batch incubations. Appl Microbiol Biotechol 97(2):847–857. doi:10.1007/s00253-012-3947-x

    Article  CAS  Google Scholar 

  • Ye L, Zhang T (2013) Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechol 97(6):2681–2690. doi:10.1007/s00253-012-4082-4

    Article  CAS  Google Scholar 

  • You SJ, Tsai YP, Huang RY (2009) Effect of heavy metals on nitrification performance in different activated sludge processes. J Hazard Mater 165(1–3):987–994. doi:10.1016/j.jhazmat.2008.10.112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by National Natural Science Foundation of China (Project No. 51178302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Zhai.

Ethics declarations

Funding

This study was funded by National Natural Science Foundation of China (Project No. 51178302).

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, F., Ji, M., Zhai, H. et al. Dynamics of the diversity and structure of the overall and nitrifying microbial community in activated sludge along gradient copper exposures. Appl Microbiol Biotechnol 100, 6881–6892 (2016). https://doi.org/10.1007/s00253-016-7529-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7529-1

Keywords

Navigation