Skip to main content
Log in

Beneficial microorganisms for honey bees: problems and progresses

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Nowadays, honey bees are stressed by a number of biotic and abiotic factors which may compromise to some extent the pollination service and the hive productivity. The EU ban of antibiotics as therapeutic agents against bee pathogens has stimulated the search for natural alternatives. The increasing knowledge on the composition and functions of the bee gut microbiota and the link between a balanced gut microbiota and health status have encouraged the research on the use of gut microorganisms to improve bee health. Somehow, we are assisting to the transfer of the “probiotic concept” into the bee science. In this review, we examine the role of the honey bee gut microbiota in bee health and critically describe the available applications of beneficial microorganisms as pest control agents and health support. Most of the strains, mainly belonging to the genera Lactobacillus, Bifidobacterium and Bacillus, are isolated from honey bee crop or gut, but some applications involve environmental strains or formulation for animal and human consumption. Overall, the obtained results show the favourable effect of applied microbial strains on bee health and productivity, in particular if strains of bee origin are used. However, it is actually not yet possible to conclude whether this strategy will ever work. In particular, many aspects regarding the overall setup of the experiments, the dose, the timing and the duration of the treatment need to be optimized, also considering the microbiological safety of the hive products (i.e. pollen and honey). In addition, a deep investigation about the effect on host immunity and physiology is envisaged. Lastly, the final users of the formulations, i.e. beekeepers, should be taken into account for the achievement of high-quality, cost-effective and easy-to-use products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizen MA, Harder LD (2009) The global stock of domesticated honeybees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918. doi:10.1016/j.cub.2009.03.071

    Article  CAS  PubMed  Google Scholar 

  • Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y (2010a) Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ Microbiol 12(3):774–782. doi:10.1111/j.1462-2920.2009.02123.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Alaux C, Ducloz F, Crauser D, Le Conte Y (2010b) Diet effects on honeybee immunocompetence. Biol Lett 23:562–565. doi:10.1098/rsbl.2009.0986

    Article  Google Scholar 

  • Alberoni D, Baffoni L, Gaggia F, Ryan P, Murphy K, Ross RP, Biavati B, Stanton C, Di Gioia D (2015) Administration of lactobacilli and bifidobacteria on Apis mellifera L. beehives to increase health of the bee super-organism. In: Microbial Diversity 2015, the challenge of complexity. Perugia, pp 107–108

  • Alippi AM, Reynaldi FJ (2006) Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore-forming bacteria isolated from apiarian sources. J Invertebr Pathol 91:141–146. doi:10.1016/j.jip.2005.12.002

    Article  PubMed  Google Scholar 

  • Anbutsu H, Fukatsu T (2010) Evasion, suppression and tolerance of Drosophila innate immunity by a male-killing Spiroplasma endosymbiont. Insect Mol Biol 19:481–488. doi:10.1111/j.1365-2583.2010.01008.x

    CAS  PubMed  Google Scholar 

  • Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, Walton A, Jones BM, Corby-Harris V (2013) Microbial ecology of the hive and pollination landscape: bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS One 17;8(12):e83125. doi: 10.1371/journal.pone.0083125

  • Anderson KE, Rodrigues PAP, Mott BM, Maes P, Corby-Harris V (2016) Ecological succession in the honey bee gut: shift in Lactobacillus strain dominance during early adult development. Microb Ecol 71:1008–1019. doi:10.1007/s00248-015-0716-2

    Article  CAS  PubMed  Google Scholar 

  • Andrearczyk S, Kadhim MJ, Knaga S (2014) Influence of a probiotic on the mortality, sugar syrup ingestion and infection of honeybees with Nosema spp. under laboratory assessment. Med Weter 70:762–765

    Google Scholar 

  • Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290. doi:10.1111/j.1462-2920.2009.01953.x

    Article  PubMed  CAS  Google Scholar 

  • Audisio MC, Benítez-Ahrendts MR (2011) Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Benef Microbes 2:29–34. doi:10.3920/BM2010.0024

    Article  CAS  PubMed  Google Scholar 

  • Audisio MC, Torres MJ, Sabaté DC, Ibarguren C, Apella MC (2011) Properties of different lactic acid bacteria isolated from Apis mellifera L. Bee-gut. Microbiol Res 166:1–13. doi:10.1016/j.micres.2010.01.003

    Article  CAS  Google Scholar 

  • Audisio MC, Sabaté DC, Benítez-Ahrendts MR (2015) Effect of Lactobacillus johnsonii CRL1647 on different parameters of honeybee colonies and bacterial populations of the bee gut. Benef Microbs 25:1–10. doi:10.3920/BM2014.0155

    Google Scholar 

  • Babendreier D, Joller D, Romeis J, Bigler F, Widmer F (2007) Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiol Ecol 87:87–97. doi:10.1111/j.1574-6941.2006.00249.x

    Google Scholar 

  • Baffoni L, Gaggìa F, Alberoni D, Cabbri R, Nanetti A, Biavati B, Di Gioia D (2016) Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Benef Microbs 7:45–51. doi:10.3920/BM2015.0085

    Google Scholar 

  • Barribeau SM, Sadd BM, du Plessis L, Brown MJ, Buechel SD, Cappelle K, Carolan JC, Christiaens O, Colgan TJ, Erler S, Evans J, Helbing S, Karaus E, Lattorff HM, Marxer M, Meeus I, Näpflin K, Niu J, Schmid-Hempel R, Smagghe G, Waterhouse RM, Yu N, Zdobnov EM, Schmid-Hempel P (2015) A depauperate immune repertoire precedes evolution of sociality in bees. Genome Biol 16:1–21. doi:10.1186/s13059-015-0628-y

    Article  CAS  Google Scholar 

  • Ben Ami E, Yuval B, Jurkevitch E (2010) Manipulation of the microbiota of mass-reared Mediterranean fruit flies Ceratitis capitata (Diptera: Tephritidae) improves sterile male sexual performance. ISME J 4:28–37. doi:10.1038/ismej.2009.82

    Article  PubMed  Google Scholar 

  • Berasategui A, Shukla S, Salem H, Kaltenpoth M (2016) Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 100:1567–1577. doi:10.1007/s00253-015-7186-9

    Article  CAS  PubMed  Google Scholar 

  • Bíliková K, Hanes J, Nordhoff E, Saenger W, Klaudiny J, Šimúth J (2002) Apisimin, a new serine–valine-rich peptide from honeybee (Apis mellifera L.) royal jelly: purification and molecular characterization. FEBS Lett 528:125–129. doi:10.1016/S0014-5793(02)03272-6

  • Bond J, Plattner K, Hunt K (2014) Fruit and Tree Nuts Outlook: Economic Insight. US Pollination-Services Market. USDA Economic Research Service Situation and Outlook FTS-357SA.

  • Bottacini F, Milani C, Turroni F, Sánchez B, Foroni E, Duranti S, Serafini F, Viappiani A, Strati F, Ferrarini A, Delledonne M, Henrissat B, Coutinho P, Fitzgerald GF, Margolles A, van Sinderen D, Ventura M (2012) Bifidobacterium asteroides PRL2011 genome analysis reveals clues for colonization of the insect gut. PLoS One 7(9):e44229. doi:10.1371/journal.pone.0044229

  • Brodschneider R, Crailsheim K (2010) Nutrition and health in honey bees. Apidol 41:278–294. doi:10.1051/apido/2010012

    Article  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250. doi:10.1038/nrmicro1098

    Article  CAS  PubMed  Google Scholar 

  • Brummel T, Ching A, Seroude L, Simon AF, Benzer S (2004) Drosophila lifespan enhancement by exogenous bacteria. Proc Natl Acad Sci U S A 101:12974–12979. doi:10.1073/pnas.0405207101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344. doi:10.1101/gad.1827009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler È, Alsterfjord M, Olofsson TC, Karlsson C, Malmström J, Vásquez A (2013) Proteins of novel lactic acid bacteria from Apis mellifera mellifera: an insight into the production of known extra-cellular proteins during microbial stress. BMC Microbiol 13:235. doi:10.1186/1471-2180-13-235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus spp.). ISME J 8:2369–2379. doi:10.1038/ismej.2014.68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Vaek M, Tempst P (1989) Apidaecins: antimicrobial peptides from honeybees. EMBO J 8:2387–2391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casteels P, Ampe C, Riviere L, Damme JV, Elicone C, Fleming M, Jacobs F, Tempst P (1990) Isolation and characterization of abaecin, a major antimicrobial peptide in the honeybee (Apis mellifera). Eur J Biochem 187:381–386. doi:10.1111/j.1432-1033.1990.tb15315.x

    Article  CAS  PubMed  Google Scholar 

  • Casteels P, Ampe C, Jacobs F, Tempst P (1993) Functional and chemical characterization of hymenoptaecin, an antimicrobial peptide that is infection-inducible in the honeybee (Apis mellifera). J Biol Chem 268:7044–7054

    CAS  PubMed  Google Scholar 

  • Corby-Harris V, Snyder LA, Schwan MR, Maes P, McFrederick QS, Anderson KE (2014) Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl Environ Microbiol 80:7460–7472. doi:10.1128/AEM.02043-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corby-Harris V, Snyder L, Meador CA, Naldo R, Mott B, Anderson KE (2016) Parasaccharibacter apium, gen. nov., sp. nov., improves honey bee (Hymenoptera: Apidae) resistance to Nosema. J Econ Entomol 109:537–543. doi:10.1093/jee/tow012

  • Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan P-L, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287. doi:10.1126/science.1146498

    Article  CAS  PubMed  Google Scholar 

  • Cremer S, Armitage SA, Schmid-Hempel P (2007) Social immunity. Curr Bio 17:693–702. doi:10.1016/j.cub.2007.06.008

    Article  CAS  Google Scholar 

  • Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C, Daffonchio D (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76:6963–6970. doi:10.1128/AEM.01336-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crotti E, Balloi A, Hamdi C, Sansonno L, Marzorati M, Gonella E, Favia G, Cherif A, Bandi C, Alma A, Daffonchio D (2012) Microbial symbionts: a resource for the management of insect-related problems. Microb Biotechnol 5:307–317. doi:10.1111/j.1751-7915.2011.00312.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Gioia D, Aloisio I, Mazzola G, Biavati B (2014) Bifidobacteria: their impact on gut microbiota composition and their applications as probiotics in infants. Appl Microbiol Biotechnol 98:563–577. doi:10.1007/s00253-013-5405-9

    Article  CAS  PubMed  Google Scholar 

  • Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, Gargiulo G, Pennacchio F (2013) Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc Natl Acad Sci U S A 110:18466–18471. doi:10.1073/pnas.1314923110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon R, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153:503–509. doi:10.1016/S0923-2508(02)01361-X

    Article  CAS  PubMed  Google Scholar 

  • Dillon RJ, Vennard CT, Buckling A, Charnley AK (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8:1291–1298. doi:10.1111/j.1461-0248.2005.00828.x

    Article  Google Scholar 

  • Dively GP, Embrey MS, Kamel A, Hawthorne DJ, Pettis JS (2015) Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One 10(3):e0118748. doi:10.1371/journal.pone.0118748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong Y, Manfredini F, Dimopoulos G (2009) Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog 5(5):e1000423. doi:10.1371/journal.ppat.1000423

    Article  PubMed  PubMed Central  Google Scholar 

  • Doublet V, Labarussias M, Miranda JR, Moritz RF, Paxton RJ (2015) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983. doi:10.1111/1462-2920.12426

    Article  CAS  PubMed  Google Scholar 

  • EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards) (2015) Statement on the update of the list of QPS - recommended biological agents intentionally added to food or feed as notified to EFSA 3: suitability of taxonomic units notified to EFSA until September 2015. EFSA J 13(12):4331. doi:10.2903/j.efsa.2015.433

  • Ellegaard KM, Tamarit D, Javelind E, Olofsson TC, Andersson SG, Vásquez A (2015) Extensive intra-phylotype diversity in lactobacilli and bifidobacteria from the honeybee gut. BMC Genom 16:284. doi:10.1186/s12864-015-1476-6

    Article  CAS  Google Scholar 

  • Engel P, Moran NA (2013) Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4:60–65. doi:10.4161/gmic.22517

    Article  PubMed  PubMed Central  Google Scholar 

  • Engel P, Kwong WK, Moran NA (2013) Frischella perrara gen. nov., sp. nov., a Gammaproteobacterium isolated from the gut of the honeybee, Apis mellifera. Int J Syst Evol Microbiol 63:3646–3651. doi:10.1099/ijs.0.049569-0

    Article  CAS  PubMed  Google Scholar 

  • European Commission (2010) Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. EU 15:1–70. http://ec.europa.eu/health/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf. Accessed 31 may 2016

  • Evans JD, Lopez DL (2004) Bacterial probiotics induce an immune response in the honey bee (Hymenoptera: Apidae). J Econ Entomol 97:752–756. doi:10.1093/jee/97.3.752

    Article  CAS  PubMed  Google Scholar 

  • Evans JD, Pettis JS (2005) Colony-level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution 59:2270–2274. doi:10.1111/j.0014-3820.2005.tb00935.x

    Article  CAS  PubMed  Google Scholar 

  • Evans JD, Aronstein K, Chen YP, Hetru C, Imler JL, Jiang H, Kanost M, Thompson GJ, Zou Z, Hultmark D (2006) Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol Bio 15:645–656. doi:10.1111/j.1365-2583.2006.00682.x

    Article  CAS  Google Scholar 

  • Fang Q, Wang L, Zhu J, Li Y, Song Q, Stanley DW, Akhtar Z, Ye G (2010) Expression of immune-response genes in lepidopteran host is suppressed by venom from an endoparasitoid, Pteromalus puparum. BMC Genom 11:484

    Article  CAS  Google Scholar 

  • FAO/WHO (2002) Joint FAO/WHO (Food and Agriculture Organization/World Health Organization) working group report on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada. Guidelines for the evaluation of probiotics in food. Joint working group report on drafting. London, Ontario, 2002:1–11. http://who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf

  • Fernandez JM, Puerta F, Cousinou M, Dios-Palomares R, Campano F, Redondo L (2012) Asymptomatic presence of Nosema spp. in Spanish commercial apiaries. J Inverte Pathol 111:106–110. doi:10.1016/j.jip.2012.06.008

    Article  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi:10.1038/nrmicro2415

    CAS  PubMed  Google Scholar 

  • Forsgren E, Olofsson TC, Vásquez A, Fries I (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae. Apidol 41:99–108. doi:10.1051/apido/2009065

    Article  Google Scholar 

  • Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:15–28. doi:10.1016/j.ijfoodmicro.2010.02.031

    Article  Google Scholar 

  • Gaggìa F, Di Gioia D, Baffoni L, Biavati B (2011) The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci Tech 22:58–66. doi:10.1016/j.tifs.2011.03.003

    Article  CAS  Google Scholar 

  • Gaggìa F, Baffoni L, Stenico V, Alberoni D, Buglione E, Lilli A, Di Gioia D, Porrini C (2015) Microbial investigation on honey bee larvae showing atypical symptoms of European foulbrood. Bulletin Insect 68:321–327

    Google Scholar 

  • Gill RJ, Baldock KC, Brown MJ, Cresswell JE, Dicks LV, Fountain MT, Garratt MPD, Gough LA, Heard MS, Holland JM, Ollerton J, Stone GN, Tang CQ, Vanbergen AJ, Vogler AP, Woodward G, Arce AN, Boatman ND, Brand-Hardy R, Breeze TD, Green M, Hartfield CM, O’Connor RS, Osborne JL, Phillips J, Sutton PB (2016) Protecting an ecosystem service: approaches to understanding and mitigating threats to wild insect pollinators. Adv Eco Res 54:135–206. doi:10.1016/bs.aecr.2015.10.007

    Article  Google Scholar 

  • Gisder S, Genersch E (2015) Identification of candidate agents active against N. ceranae infection in honey bees: establishment of a medium throughput screening assay based on N. ceranae infected cultured cells. PLoS One 10(2):e0117200. doi: 10.1371/journal.pone.0117200

  • Goblirsch M, Huang ZY, Spivak M (2013) Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 8(3):e58165. doi:10.1371/journal.pone.005816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goulson D, Nicholls E, Botias C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. doi:10.1126/science.1255957

    Article  PubMed  CAS  Google Scholar 

  • Gündüz EA, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proce Roy Soc London Biol Sci 276:987–991. doi:10.1098/rspb.2008.1476

    Article  CAS  Google Scholar 

  • Hamdi C, Daffonchio D (2011) Methods for the prevention and control of pathogenic infections in bees and relative composition. Patent Application WO/2011/138310.

  • Hamdi C, Balloi A, Essanaa J, Crotti E, Gonella E, Raddadi N, Ricci I, Boudabous A, Borin S, Manino A, Bandi C, Alma A, Daffonchio D, Cherif A (2011) Gut microbiome dysbiosis and honeybee health. J Appl Entomol 135:524–533. doi:10.1111/j.1439-0418.2010.01609.x

    Article  Google Scholar 

  • Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702–702. doi:10.1126/science.1162418

    Article  CAS  PubMed  Google Scholar 

  • Higes M, Martin-Hernandez R, Meana A (2010) Nosema ceranae in Europe: an emergent type C nosemosis. Apidol 41:375–392. doi:10.1051/apido/2010019

    Article  Google Scholar 

  • Holst EC (1945) An antibiotic from a bee pathogen. Science 102:593–594

    Article  CAS  Google Scholar 

  • Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118. doi:10.1126/science.1058709

    Article  CAS  PubMed  Google Scholar 

  • Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23:672–677. doi:10.1016/j.tree.2008.07.011

    Article  PubMed  Google Scholar 

  • Hui-Ru J, Yan-Yan W, Ping-Li D, Qiang W, Ting Z (2015) Effects of the sublethal doses of imidacloprid on the bacterial diversity in the midgut of Apis mellifera Ligustica (Hymenoptera: Apidae). Acta Entomol Sin 58:139–146. doi:10.16380/j.kcxb.2015.02.005

    Google Scholar 

  • Imler J, Bulet P (2005) Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21. doi:10.1159/000086648

    Article  CAS  PubMed  Google Scholar 

  • Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215. doi:10.1126/science.1188235

    Article  CAS  PubMed  Google Scholar 

  • Janashia I, Alaux C (2016) Specific immune stimulation by endogenous bacteria in honey bees (Hymenoptera: Apidae). J Econ Entomol. doi:10.1093/jee/tow065

  • Jefferson JM, Dolstad HA, Sivalingam MD, Snow JW (2013) Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS One 8(1):e54097. doi:10.1371/journal.pone.0054097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapheim KM, Rao VD, Yeoman CJ, Wilson BA, White BA, Goldenfeld N, Robinson GE (2015) Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS One 10(4):e0123911. doi:10.1371/journal.pone.0123911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazimierczak-Baryczko M, Szymaś B (2006) Improvement of the composition of pollen substitute for honey bee (Apis mellifera L.), through implementation of probiotic preparation. J Apic Sci 50:15–22

    Google Scholar 

  • Kaznowiski A, Szymas B, Jazdzinska E, Kazimierczak M, Paetz H, Mokracka J (2005) The effect of probiotic supplementation on the content of intestinal microflora and chemical composition of worker honey bees (Apis mellifera). J Apic Res 44:10–14. doi:10.1080/00218839.2005.11101139

    Article  Google Scholar 

  • Killer J, Dubná S, Sedláček I, Švec P (2014) Lactobacillus apis sp. nov., from the stomach of honeybees (Apis mellifera), having an in vitro inhibitory effect on the causative agents of American and European foulbrood. Int J Syst Evol Microbiol 64:152–157. doi:10.1099/ijs.0.053033-0

    Article  CAS  PubMed  Google Scholar 

  • Klaudiny J, Albert Š, Bachanová K, Kopernický J, Šimúth J (2005) Two structurally different defensin genes, one of them encoding a novel defensin isoform, are expressed in honeybee Apis mellifera. Insect Biochem Mol Biol 35:11–22. doi:10.1016/j.ibmb.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  • Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA (2010) The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34:199–230. doi:10.1111/j.1574-6976.2009.00208.x

    Article  CAS  PubMed  Google Scholar 

  • Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc Biol Sci 274:303–313. doi:10.1098/rspb.2006.3721

    Article  PubMed  Google Scholar 

  • Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int J Syst Evol Microbiol 63:2008–2018. doi:10.1099/ijs.0.044875-0

    Article  CAS  PubMed  Google Scholar 

  • Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14:374–384. doi:10.1038/nrmicro.2016.43

    Article  CAS  PubMed  Google Scholar 

  • Kwong WK, Engel P, Koch H, Moran NA (2014) Genomics and host specialization of honey bee and bumble bee gut symbionts. Proc Natl Acad Sci U S A 111:11509–11514. doi:10.1073/pnas.1405838111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidol 41:353–363. doi:10.1051/apido/2010017

    Article  Google Scholar 

  • Lee H, Churey JJ, Worobo RW (2009) Isolation and characterization of a protective bacterial culture isolated from honey active against American foulbrood disease. FEMS Microbiol Lett 296:39–44. doi:10.1111/j.1574-6968.2009.01615.x

    Article  CAS  PubMed  Google Scholar 

  • Lee FJ, Rusch DB, Stewart FJ, Mattila HR, Newton IL (2015) Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ Microbiol 17:796–815. doi:10.1111/1462-2920.12526

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743. doi:10.1146/annurev.immunol.25.022106.141615

    Article  CAS  PubMed  Google Scholar 

  • Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78:2830–2840. doi:10.1128/AEM.07810-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medrzycki P, Montanari R, Bortolotti L, Sabatini AG, Maini S, Porrini C (2003) Effects of imidacloprid administered in sub-lethal doses on honey bee behaviour. Laboratory tests. Bull Insect 56:59–62

    Google Scholar 

  • Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, van Sinderen D, Ventura M (2015) Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol 82:980–991. doi:10.1128/AEM.03500-15

    Article  PubMed  CAS  Google Scholar 

  • Moran NA (2015) Genomics of the honey bee microbiome. Curr Opin Insect Sci 10:22–28. doi:10.1016/j.cois.2015.04.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller S, Garcia-Gonzalez E, Genersch E, Süssmuth RD (2015) Involvement of secondary metabolites in the pathogenesis of the American foulbrood of honey bees caused by Paenibacillus larvae. Nat Prod Rep 32:765–778. doi:10.1039/C4NP00158C

    Article  PubMed  Google Scholar 

  • Newton IL, Sheehan KB, Lee FJ, Horton MA, Hicks RD (2013) Invertebrate systems for hypothesis-driven microbiome research. Microbiome Sci Med 1(1). doi:10.2478/micsm-2013-0001

  • Nieto A, Roberts SPM, Kemp J, Rasmont P, Kuhlmann M, Criado GM, Biesmeijer JC, Bogusch P, Dathe HH, De la Rúa P, De Meulemeester T, Dehon M, Dewulf A, Ortiz-Sánchez FJ, Lhomme P, Pauly A, Potts SG, Praz C, Quaranta M, Radchenko VG, Scheuchl E, Smit J, Straka J, Terzo M, Tomozii B, Window J, Michez D (2014) European red list of bees. Publication Office of the European Union. http://ec.europa.eu/environment/nature/conservation/species/redlist/downloads/European_bees.pdf.

  • Olofsson TC, Vásquez A (2008) Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Curr Microbiol 57:356–363. doi:10.1007/s00284-008-9202-0

    Article  CAS  PubMed  Google Scholar 

  • Olofsson TC, Alsterfjord M, Nilson B, Butler È, Vásquez A (2014) Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and Lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int J Syst Evol Microbiol 64:3109–3119. doi:10.1099/ijs.0.059600-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Pătruică S, Dumitrescu G, Stancu A, Bura M, Bănătean Dunea I (2012) The effect of prebiotic and probiotic feed supplementation on the wax glands of worker bees (Apis mellifera). J Anim Sci Biotech 45:268–271

    Google Scholar 

  • Porrini C, Mutinelli F, Bortolotti L, Granato A, Laurenson L, Roberts K, Gallina A, Silvester N, Medrzycki P, Renzi T, Sgolastra F, Lodesani M (2016) The status of honey bee health in Italy: results from the nationwide bee monitoring network. PLoS One 11(5):e0155411. doi:10.1371/journal.pone.0155411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353. doi:10.1016/j.tree.2010.01.007

    Article  PubMed  Google Scholar 

  • Powell JE, Martinson VG, Urban-Mead K, Moran NA (2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Appl Environ Microbiol 80:7378–7387. doi:10.1128/AEM.01861-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ptaszyńska AA, Borsuk G, Mułenko W, Olszewski K (2013) Impact of ethanol on Nosema spp. infected bees. Med Weter 69:736–741

    Google Scholar 

  • Ptaszyńska AA, Borsuk G, Zdybicka-Barabas A, Cytryńska M, Małek W (2016) Are commercial probiotics and prebiotics effective in the treatment and prevention of honeybee nosemosis C? Parasitol Res 115:397–406. doi:10.1007/s00436-015-4761-z

    Article  PubMed  Google Scholar 

  • Robinson CJ, Schloss P, Ramos Y, Raffa K, Handelsman J (2010) Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microbiol Ecol 59:199–211. doi:10.1007/s00248-009-9595-8

    Article  Google Scholar 

  • Rokop ZP, Horton MA, Newton ILG (2015) Interactions between co-occurring lactic acid bacteria in honey bee hives. Appl Environ Microbiol 81:7261–7270. doi:10.1128/AEM.01259-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:96–119. doi:10.1016/j.jip.2009.07.016

    Article  Google Scholar 

  • Ruottinen L, Berg P, Kantanen J, Kristensen TN, Praebel A, Groeneveld L (2014) Status and conservation of the nordic brown bee: final report. Nordic Genetic Resource Center (NordGen) http://vbn.aau.dk/ws/files/207960984/Ruottinen_et_al_2014.pdf

  • Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319:777–782. doi:10.1126/science.1149357

    Article  CAS  PubMed  Google Scholar 

  • Sabaté DC, Carrillo L, Audisio MC (2009) Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res Microbiol 160:193–199. doi:10.1016/j.resmic.2009.03.002

    Article  PubMed  Google Scholar 

  • Sabaté DC, Cruz MS, Benítez-Ahrendts MR, Audisio MC (2012) Beneficial effects of Bacillus subtilis subsp. subtilis Mori2, a honey-associated strain, on honeybee colony performance. Probiotics Antimicrob Proteins 4:39–46. doi:10.1007/s12602-011-9089-0011-9089-0

    Article  PubMed  Google Scholar 

  • Sanders ME, Lenoir-Wijnkoop I, Salminen S, Merenstein DJ, Gibson GR, Petschow BW, Nieuwdorp M, Tancredi DJ, Cifelli CJ, Jacques P, Pot B (2014) Probiotics and prebiotics: prospects for public health and nutritional recommendations. Ann N Y Acad Sci 1309:19–29. doi:10.1111/nyas.12377

    Article  CAS  PubMed  Google Scholar 

  • Saraiva MA, Zemolin APP, Franco JL, Boldo JT, Stefenon VM, Triplett EW, De Oliveira FA, Roesch LFW (2015) Relationship between honeybee nutrition and their microbial communities. Antonie Van Leeuwenhoek 107:921–933. doi:10.1007/s10482-015-0384-8

    Article  CAS  PubMed  Google Scholar 

  • Servin AL (2004) Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 28:405–440. doi:10.1016/j.femsre.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  • Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107:20051–20056. doi:10.1073/pnas.1009906107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snowdon JA, Cliver DO (1996) Microorganisms in honey. Int J Food Microbiol 31:1–26. doi:10.1016/0168-1605(96)00970-1

    Article  CAS  PubMed  Google Scholar 

  • Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 4:403–414. doi:10.1016/j.cmet.2011.07.012

    Article  CAS  Google Scholar 

  • Sun Z, Zhang W, Guo C, Yang X, Liu W, Wu Y, Song Y, Kwok LY, Cui Y, Menghe B, Yang R, Hu L, Zhang H (2015) Comparative genomic analysis of 45 type strains of the genus Bifidobacterium: a snapshot of its genetic diversity and evolution. PLoS One 10(2):e0117912. doi:10.1371/journal.pone.011791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szymaś B, Łangowska A, Kazimierczak-Baryczko M (2012) Histological structure of the midgut of honey bees (Apis mellifera L.) fed pollen substitutes fortified with probiotics. J Apic Sci 56:5–12. doi:10.2478/v10289-012-0001-2

    Google Scholar 

  • Tarpy DR, Mattila HR, Newtond ILG (2015) Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Env Microbiol 81:3182–3191. doi:10.1128/AEM.00307-15

    Article  CAS  Google Scholar 

  • Tontou R, Gaggìa F, Baffoni L, Devescovi G, Venturi V, Giovanardi G, Stefani E (2015) Molecular characterisation of an endophyte showing a strong antagonistic activity against Pseudomonas syringae pv. actinidiae. Plant Soil. doi:10.1007/s11104-015-2624-0

    Google Scholar 

  • Vásquez A, Forsgren E, Fries I, Paxton RJ, Flaberg E, Szekely L, Olofsson TC (2012) Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7(3):e33188. doi:10.1371/journal.pone.0033188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet JL, Texier C, Biron DG, Blot N, El Alaoui H, Belzunces LP, Delbac F (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550. doi:10.1371/journal.pone.0021550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423. doi:10.1146/annurev.ento.53.103106.093301

    Article  CAS  PubMed  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626. doi:10.1038/nature07840

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Sugimura Y, Takaya N, Takamatsu D, Kobayashi M, Taylor D, Yoshiyama M (2013) Characterization of bifidobacteria in the digestive tract of the Japanese honeybee, Apis cerana japonica. J Invertebr Pathol 112:88–93. doi:10.1016/j.jip.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  • Yoshiyama M, Kimura K (2009) Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J Invertebr Pathol 102:91–96. doi:10.1016/j.jip.2009.07.005

    Article  PubMed  Google Scholar 

  • Yoshiyama M, Wu M, Sugimura Y, Takaya N, Kimoto-Nira H, Suzuki C (2013) Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. J Invertebr Pathol 112:62–67. doi:10.1016/j.jip.2012.09.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was performed within the VII FP TRAFOON (traditional food network to improve the transfer of knowledge for innovation), grant agreement no. 613912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Di Gioia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Human and animals rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberoni, D., Gaggìa, F., Baffoni, L. et al. Beneficial microorganisms for honey bees: problems and progresses. Appl Microbiol Biotechnol 100, 9469–9482 (2016). https://doi.org/10.1007/s00253-016-7870-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7870-4

Keywords

Navigation