Skip to main content
Log in

Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Oxidative stress (OS) plays a major role in the gastrointestinal disorders. Although probiotics were reported to repress OS, few researches compared the antioxidant ability of different Bacillus strains and deciphered the mechanisms. To select a Bacillus strain with higher antioxidant capacity, we used H2O2 to induce intestinal porcine epithelial cell 1 (IPEC-1) OS model. The most suitable H2O2 concentration and incubation time were determined by the half lethal dose and methyl thiazolyl tetrazolium. Correlation analysis was performed to choose a sensitive indicator for OS. As for the comparison of Bacillus, cells were divided into control, Bacillus treatment, H2O2 treatment, and Bacillus pre-protection + H2O2 treatment. Bacillus were co-cultured with IPEC-1 for 3 h in Bacillus and Bacillus pre-protection + H2O2 treatments. Then, based on OS model, 300 μmol/L H2O2 was added into medium of H2O2 and Bacillus pre-protection + H2O2 treatments for another 12 h. Antioxidant and apoptosis gene expressions were detected to screen the target strain. Nuclear factor erythroid-derived 2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein1 (Keap1) pathway, reactive oxygen species (ROS) production, mitochondrial membrane potential (Δψm), apoptosis, and necrosis were analyzed. Results revealed that heme oxygenase-1 (HO-1) gene expression had a positive correlation with H2O2 induction. Moreover, Bacillus amyloliquefaciens SC06 (SC06)-meditated IPEC-1 showed the best antioxidant capacity though modulating Nrf2 phosphorylation. Δψm was elevated, while ROS generation was reduced with SC06 pre-protection, resulting in decreased apoptosis and necrosis. Altogether, HO-1 expression could be regarded as an OS indicator. The regulation of Nrf2/Keap1 pathway and ROS production by SC06 are involved in alleviating OS of IPEC-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amaretti A, di Nunzio M, Pompei A, Raimondi S, Rossi M, Bordoni A (2013) Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Appl Microbiol Biotechnol 97:809–817

    Article  CAS  PubMed  Google Scholar 

  • Araya M (2002) Guidelines for the evaluation of probiotics in food. Report of a Joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. London Ontario, Canada

  • Bauer M, Bauer I (2002) Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal 4:749–758

    Article  CAS  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Cho HY, Reddy SP, Kleeberger SR (2006) Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8:76–87

    Article  CAS  PubMed  Google Scholar 

  • Choi AM, Alam J (1996) Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol 15:9–19

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2012) Intestinal redox biology and oxidative stress. Semin Cell Dev Biol 23:729–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RA, Volpp BD, Leidal KG, Nauseef WM (1990) Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest 85:714–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke G, Ting KN, Wiart C, Fry J (2013) High correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the malaysian rainforest. Antioxidants 2:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Benna J, Ruedi JM, Babior BM (1994) Cytosolic guanine nucleotide-binding protein Rac 2 operates in vivo as a component of the neutrophil respiratory burst oxidase. Transfer of Rac 2 and the cytosolic oxidase components p47 (phox) and p67 (phox) to the submembranous actin cytoskeleton during oxidase activation. J Biol Chem 269:6729–6734

    CAS  PubMed  Google Scholar 

  • El-Benna J, Dang PM, Gougerot-Pocidalo MA (2008) Priming of the neutrophil NADPH oxidase activation: role of p47phox phosphorylation and NOX2 mobilization to the plasma membrane. Semin Immunopathol 30:279–289

    Article  CAS  PubMed  Google Scholar 

  • Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T (2013) Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One 8:e63388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao D, Gao Z, Zhu G (2013) Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2. Food Funct 4:982–989

    Article  CAS  PubMed  Google Scholar 

  • Gotoh Y, Noda T, Iwakiri R, Fujimoto K, Rhoads CA, Aw TY (2002) Lipid peroxide-induced redox imbalance differentially mediates CaCo-2 cell proliferation and growth arrest. Cell Prolif 35:221–235

    Article  CAS  PubMed  Google Scholar 

  • Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15:411–421

    Article  CAS  PubMed  Google Scholar 

  • Hong HA, Duc LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Dun Y, Li S, Zhao S, Peng N, Liang Y (2014) Effects of Bacillus subtilis KN-42 on growth performance, diar rhea and faecal bacterial flora of weaned piglets. Asian Australas J Anim Sci 27:1131–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, Oyake T, Hayashi N, Satoh K, Hatayama I, Yama moto M, Nabeshima Y (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322

    Article  CAS  PubMed  Google Scholar 

  • Ji LL (2007) Antioxidant signaling in skeletal muscle: a brief review. Exp Gerontol 42:582–593

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7:385–394

    Article  CAS  PubMed  Google Scholar 

  • Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M, Kensler TW (2003) Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem 278:8135–8145

    Article  CAS  PubMed  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immuno 4:181–189

    Article  CAS  Google Scholar 

  • Lebiedzinska M, Karkucinska-Wieckowska A, Giorgi C, Karczmarewicz E, Pronicka E, Pinton P, Duszyński J, Pronicki M, Wieckowski MR (2010) Oxidative stress-dependent p66Shc phosphorylation in skin fibroblasts of children with mitochondrial disorders. Biochim Biophys Acta 1797:952–960

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37:139–143

    CAS  PubMed  Google Scholar 

  • Lei K, Li YL, Wang Y, Wen J, Wu HZ, Yu DY, Li WF (2015) Effect of dietary supplementation of Bacillus subtilis B10 on biochemical and molecular parameters in the serum and liver of high-fat diet-induced obese mice. J Zhejiang Univ Sci B 16:487–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YL, Lei K, Xu X, Rajput IR, Yu DY, Li WF (2013) Protective effect of Bacillus subtilis B10 against hydrogen peroxide-induced oxidative stress in a murine macrophage cell line. Int J Agric Biol 15:927–932

    CAS  Google Scholar 

  • Ly JD, Grubb DR, Lawen A (2003) The mitochondrial membrane potential (Δψm) in apoptosis: an update. Apoptosis 8:115–128

    Article  CAS  PubMed  Google Scholar 

  • Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 53:401–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher J, Yamamoto M (2010) The rise of antioxidant signaling-the evolution and hormetic actions of Nrf2. Toxicol Appl Pharmacol 244:4–15

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Kane LH, Rossi MW, Volpp BD, Nauseef WM, Korchak HM (1993) Protein kinase C isotypes and signal-transduction in human neutrophils: selective substrate specificity of calcium-dependent beta-PKC and novel calcium-independent nPKC. Biochim Biophys Acta 1176:276–286

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Wang B, Xu X, Du W, Li W, Wang Y (2015) Glycyrrhizic acid promotes M1 macrophage polarization in murine bone marrow-derived macrophages associated with the activation of JNK and NF-κB. Mediat Inflamm 2015

  • Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, De Galarreta CM, Cuadrado A (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279:8919–8929

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Shah C, Mokashe N, Chavan R, Yadav H, Prajapati J (2015) Probiotics as potential antioxidants: a systematic review. J Agricultural Food Chem 63:3615–3626

    Article  CAS  Google Scholar 

  • Nikoskelainen S, Ouwehand AC, Bylund G, Salminen S, Lilius EM (2003) Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish Immunol 15:443–452

    Article  CAS  PubMed  Google Scholar 

  • Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002) Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. J Agric Food Chem 50:3122–3128

    Article  CAS  PubMed  Google Scholar 

  • Ozcelik B, Lee JH, Min DB (2003) Effects of light, oxygen, and pH on the absorbance of 2,2-diphenyl-1-picrylhydrazyl. J Food Sci 68:487–490

    Article  Google Scholar 

  • Park JB (2003) Phagocytosis induces superoxide formation and apoptosis in macrophages. Exp Mol Med 35:325–335

    Article  CAS  PubMed  Google Scholar 

  • Pirinccioglu AG, Gökalp D, Pirinccioglu M, Kizil G, Kizil M (2010) Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia. Clin Biochem 43:1220–1224

    Article  CAS  PubMed  Google Scholar 

  • Quinn MT, Evans T, Loetterle LR, Jesaitis AJ, Bokoch GM (1993) Translocation of Rac correlates with NADPH oxidase activation. Evidence for equimolar translocation of oxidase components J Biol Chem 268:20983–20987

    CAS  PubMed  Google Scholar 

  • Rajput IR, Li LY, Xin X, Wu BB, Juan ZL, Cui ZW, Yu DY, Li WF (2013) Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens. Poult Sci 92:956–965

    Article  CAS  PubMed  Google Scholar 

  • Riedl MA, Saxon A, Diaz-Sanchez D (2009) Oral sulforaphane increases phase II antioxidant enzymes in the human upper airway. Clin Immunol 130:244–251

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Choi AMK (2002) Heme oxygenase-1: molecular mechanisms of gene expression in oxygen-related stress. Antioxid Redox Signal 4:625–632

    Article  CAS  PubMed  Google Scholar 

  • Salinas M, Diaz R, Abraham NG, Ruiz de Galarreta CM, Cuadrado A (2003) Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. J Biol Chem 278:13898–13904

    Article  CAS  PubMed  Google Scholar 

  • Scapagnini G, Foresti R, Calabrese V, Giuffrida Stella AM, Green CJ, Motterlini R (2002) Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol Pharmacol 61:554–561

    Article  CAS  PubMed  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekhar KR, Yan XX, Freeman ML (2002) Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by KI AA0132, the human homolog to INrf2. Oncogene 21:6829–6834

    Article  CAS  PubMed  Google Scholar 

  • Sekher Pannala A, Chan TS, O'Brien PJ, Rice-Evans CA (2001) Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem Biophys Res Commun 282:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    Article  CAS  PubMed  Google Scholar 

  • Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Olanders K, Lasson A, Dib M, Annborn M, Andersson K, Wang X, Andersson R (2002) Effective treatment of gut barrier dysfunction using an antioxidant, a PAF inhibitor, and monoclonal antibodies against the adhesion molecule PECAM-1. J Surg Res 105:220–233

    Article  CAS  PubMed  Google Scholar 

  • Suski JM, Lebiedzinska M, Bonora M, Pinton P, Duszynski J, Wieckowski MR (2012) Relation between mitochondrial membrane potential and ROS formation. Methods Mol Biol 810:183–205

    Article  CAS  PubMed  Google Scholar 

  • Tovar-Ramírez D, Mazurais D, Gatesoupe JF, Quazuguel P, Cahu CL, Zambonino-Infante JL (2010) Dietary probiotic live yeast modulates antioxidant enzyme activities and gene expression of sea bass (Dicentrarchus labrax) larvae. Aquaculture 300:142–147

    Article  Google Scholar 

  • Tsunada S, Iwakiri R, Fujimoto K, Aw TY (2003a) Chronic lipid hydroperoxide stress suppresses mucosal proliferation in rat intestine: potentiation of ornithine decarboxylase activity by epidermal growth factor. Dig Dis Sci 48:2333–2341

    Article  CAS  PubMed  Google Scholar 

  • Tsunada S, Iwakiri R, Noda T, Fujimoto K, Fuseler J, Rhoads CA, Aw TY (2003b) Chronic exposure to subtoxic levels of peroxidized lipids suppresses mucosal cell turnover in rat small intestine and reversal by glutathione. Dig Dis Sci 48:210–222

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmi V, Fischer U, Weighardt H, Schulze-Osthoff K, Nickel C, Stahlmecke B, Kuhlbusch TA, Scherbart AM, Esser C, Schins RP, Albrecht C (2013) Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox-and Nrf2-independent manner. PLoS One 8:e65704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, Ohta K, Kasahara Y, Koizumi S (1999) Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest 103:129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JX, Guo LY, Feng L, Jiang WD, Kuang SY, Liu Y, Hu K, Jiang J, Li SH, Tang L, Zhou XQ (2013) Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. PLoS One 8:e58115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (Ros-induced) Ros release a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by the National High-Tech R&D Program (863) of China (No. 2013AA102803D), the National Natural Science Foundation of China (No. 31472128), and the Major Science and Technology Project of Zhejiang Province (No. 2006C12086), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifen Li or Yali Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The research performed did not involve human participants and/or animals.

Additional information

Yang Wang and Yanping Wu contributed equally to this study.

Electronic supplementary material

ESM 1

(PDF 176 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wu, Y., Wang, Y. et al. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Appl Microbiol Biotechnol 101, 3015–3026 (2017). https://doi.org/10.1007/s00253-016-8032-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-8032-4

Keywords

Navigation